Skip to main content

A Competitive Analysis for Balanced Transactional Memory Workloads

  • Conference paper
Principles of Distributed Systems (OPODIS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6490))

Included in the following conference series:

Abstract

We consider transactional memory contention management in the context of balanced workloads, where if a transaction is writing, the number of write operations it performs is a constant fraction of its total reads and writes. We explore the theoretical performance boundaries of contention management in balanced workloads from the worst-case perspective by presenting and analyzing two new polynomial time contention management algorithms. The first algorithm Clairvoyant is \(O(\sqrt{s})\)-competitive, where s is the number of shared resources. This algorithm depends on explicitly knowing the conflict graph. The second algorithm Non-Clairvoyant is \(O(\sqrt{s} \cdot \log n)\)-competitive, with high probability, which is only a O(logn) factor worse, but does not require knowledge of the conflict graph, where n is the number of transactions. Both of these algorithms are greedy. We also prove that the performance of Clairvoyant is tight, since there is no polynomial time contention management algorithm that is better than \(O((\sqrt{s})^{1-\epsilon})\)-competitive for any constant ε> 0, unless NPZPP. To our knowledge, these results are significant improvements over the best previously known O(s) competitive ratio bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-abort: Improving transactional memory performance through dynamic transaction reordering. In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409, pp. 4–18. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention management as a non-clairvoyant scheduling problem. Algorithmica 57(1), 44–61 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads. In: OPODIS 2009, pp. 3–17. Springer, Heidelberg (2009)

    Google Scholar 

  4. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling-based collision avoidance and resolution for software transactional memory. In: PODC 2008, pp. 125–134 (2008)

    Google Scholar 

  6. Dragojević, A., Guerraoui, R., Singh, A.V., Singh, V.: Preventing versus curing: avoiding conflicts in transactional memories. In: PODC 2009, pp. 7–16 (2009)

    Google Scholar 

  7. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: CCC 1996, pp. 278–287 (1996)

    Google Scholar 

  8. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based software transactional memory. In: PPoPP 2008, pp. 237–246 (2008)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  10. Guerraoui, R., Herlihy, M., Kapalka, M., Pochon, B.: Robust Contention Management in Software Transactional Memory. In: SCOOL 2005 (2005)

    Google Scholar 

  11. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention managers. In: PODC 2005, pp. 258–264 (2005)

    Google Scholar 

  12. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA 2003, pp. 388–402. ACM, New York (2003)

    Google Scholar 

  13. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In: PPoPP 2005, pp. 48–60 (2005)

    Google Scholar 

  14. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended queues as an example. In: ICDCS 2003, pp. 522–529 (2003)

    Google Scholar 

  15. Herlihy, M., Luchangco, V., Moir, M., Scherer III, I.W.N.: Software transactional memory for dynamic-sized data structures. In: PODC 2003, pp. 92–101 (2003)

    Google Scholar 

  16. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. In: ISCA 1993, pp. 289–300 (1993)

    Google Scholar 

  17. Khot, S.: Improved inapproximability results for maxclique, chromatic number and approximate graph coloring. In: FOCS 2001, pp. 600–609 (2001)

    Google Scholar 

  18. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A., Eisenstat, D., Scherer III, W.N., Scott, M.L.: Lowering the overhead of software transactional memory. Tech. Rep. TR 893, Computer Science Department, University of Rochester (2006)

    Google Scholar 

  19. Ramadan, H.E., Rossbach, C.J., Porter, D.E., Hofmann, O.S., Bhandari, A., Witchel, E.: Metatm/txlinux: Transactional memory for an operating system. IEEE Micro. 28(1), 42–51 (2008)

    Article  Google Scholar 

  20. Scherer III, W.N., Scott, M.L.: Advanced contention management for dynamic software transactional memory. In: PODC 2005, pp. 240–248 (2005)

    Google Scholar 

  21. Schneider, J., Wattenhofer, R.: Bounds on contention management algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 441–451. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Sharma, G., Busch, C.: A competitive analysis for balanced transactional memory workloads. CoRR abs/1009.0056 (2010)

    Google Scholar 

  23. Sharma, G., Estrade, B., Busch, C.: Window-based greedy contention management for transactional memory. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 64–78. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995, pp. 204–213 (1995)

    Google Scholar 

  25. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory systems. In: SPAA 2008, pp. 169–178 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sharma, G., Busch, C. (2010). A Competitive Analysis for Balanced Transactional Memory Workloads. In: Lu, C., Masuzawa, T., Mosbah, M. (eds) Principles of Distributed Systems. OPODIS 2010. Lecture Notes in Computer Science, vol 6490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17653-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17653-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17652-4

  • Online ISBN: 978-3-642-17653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics