Skip to main content

Vaporization, Plasma Formation

  • Chapter
  • First Online:

Abstract

Subsequently, we consider mainly quasi-stationary interaction processes with laser-beam dwell times of 100 ns and longer. The laser-light intensity shall be so high that significant material vaporization takes place and a dense vapor plume is formed (Fig. 11.0.1). With increasing laser-light intensities, an increasing fraction of vapor-phase species becomes ionized. In this stage, one talks about a laser-induced plasma. The vapor-/plasma-plume consists of electrons, atoms/ions, molecules and clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allmen M. von, A. Blatter: Laser-Beam Interactions with Materials, 2nd ed., Springer Ser. Mater. Sci. Vol. 2 (Springer, Berlin, Heidelberg 1995)

    Book  Google Scholar 

  • Anisimov S.I., D. Bäuerle, B.S. Luk’yanchuk: Gas dynamics and film profiles in pulsed-laser deposition of materials, Phys. Rev. B 48, 12076 (1993)

    Article  ADS  Google Scholar 

  • Anisimov S.I., Y.A. Imas, G.S. Romanov, Y.V. Khodyko : Action of High-Power Radiation on Metals (Consult. Bureau, Springfield, VA 1971)

    Google Scholar 

  • Arnold N., B. Luk’yanchuk, N. Bityurin: A fast quantitative modeling of ns laser ablation based on non-stationary averaging technique, Appl. Surf. Sci. 127–129, 184 (1998)

    Article  Google Scholar 

  • Bachmann F., P. Loosen, R: Poprawe: High Power Diode Lasers – Technology and Applications, Springer Ser. Opt. Sci. 128 (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  • Bulgakova N.M., V.P. Zhukov, A.Y. Vorobyev, Ch. Guo: Modeling of residual thermal effect in femtosecond laser ablation of metals: role of a gas environment, Appl. Phys. A 92, 883 (2008)

    Article  ADS  Google Scholar 

  • Bulgakova N.M, A.V. Bulgakov: Pulsed laser ablation of solids: transition from normal vaporization to phase explosion, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  • Chan C.L., J. Mazumder: One-Dimensional Steady-State Model for Damage by Vaporization and Liquid Expulsion due to Laser-Material Interaction, J. Appl. Phys. 62, 4579 (1987)

    Article  ADS  Google Scholar 

  • Duley W.W.: Laser Processing and Analysis of Materials (Plenum, New York 1983)

    Book  Google Scholar 

  • Duley W.W.: CO 2 Lasers - Effects and Applications, (Academic Press, London 1976)

    Google Scholar 

  • Fisher V.I., V.M. Kharash: Fast gas-ionization wave in a laser beam, Sov. Phys. – JETP, 56 (5), 1004 (1982)

    Google Scholar 

  • Herziger G., E.W. Kreutz: Fundamentals of laser microprocessing of metals, Physica Scripta T 13, 139 (1986)

    Article  ADS  Google Scholar 

  • Herziger G., E.W. Kreutz: Fundamentals of Laser Micromachining of Metals, in Laser Processing and Diagnostics, ed. by D. Bäuerle, Springer Ser. Chem. Phys., Vol. 39 (Springer, Berlin, Heidelberg 1984) p. 90

    Chapter  Google Scholar 

  • Krokhin O.N.: Generation of high-temperature vapors and plasmas by laser radiation. In laser handbook, Vol. 2, ed. by F.T. Arecchi and E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) Part E: Physical Applications, p. 1371

    Google Scholar 

  • Raizer Y.P.: Gas Discharge Physics (Springer-Verlag Berlin, Heidelberg 1991)

    Book  Google Scholar 

  • Ready J.F.: Industrial Applications of Lasers (2nd ed.) (Academic Press, London 1997)

    Google Scholar 

  • Sobol E.N.: Phase Transformations and Ablation in Laser-Treated Solids (John Wiley & Sons, New York 1995)

    Google Scholar 

  • Sona A.: Metallic Materials Processing: Cutting and Drilling, in Applied Laser Tooling, ed. by O.D.D. Soares and M. Perez-Amor (M. Nijhoff, Dordrecht 1987) p. 105

    Chapter  Google Scholar 

  • Steen W.M.: Laser Material Processing, 3rd ed. (Springer, Berlin, Heidelberg 2003)

    Book  Google Scholar 

  • Zeldovich Y.B., Yu.P. Raizer: Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, ed. by W.D. Hayes and R.F. Probstein, 1 (Academic Press, London 1966), p. 93

    Google Scholar 

  • Zweig A.D.: A Thermo-Mechanical Model for Laser Ablation, J. Appl. Phys. 70, 1684 (1991)

    Article  ADS  Google Scholar 

  • Faißt B.: Laser Marking on Plastics (Photonik International 2008/1, p. 20)

    Google Scholar 

  • Landolt-Börnstein – Group VIII/1C Laser Physics and Applications, edited by R. Poprawe, H. Weber, G. Herziger (Springer Berlin, Heidelberg, New York 2004)

    Google Scholar 

  • Luk’yanchuk B., N. Arnold, D. Bäuerle: 1997, unpublished

    Google Scholar 

  • Prokhorov A.M., V.I. Konov, I. Ursu, I.N. Mihailescu: Laser Heating of Metals (Adam Hilger Series on Optics and Optoelectronics, New York 1990)

    Google Scholar 

  • Arnold N., D. Bäuerle: 1998, unpublished

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bäuerle .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bäuerle, D. (2011). Vaporization, Plasma Formation. In: Laser Processing and Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17613-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17613-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17612-8

  • Online ISBN: 978-3-642-17613-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics