Skip to main content

Effect of Substrate Rigidity on the Growth of Nascent Adhesion Sites

  • Chapter
Advances in Cell Mechanics
  • 1428 Accesses

Abstract

Mechanical stiffness of bio-adhesive substrates is one of the major regulators of the cell adhesion and migration. In this contribution, we propose a theoretical model for the spontaneous growth of focal adhesion sites on compliant elastic substrates at the early stages of cellular adhesion. Using a purely thermodynamic approach, we demonstrate that the rate of membrane-substrate association decreases with increasing the compliance of the substrate. This can be considered as a reason for smaller spread area of the focal adhesion points after the stabilization of adhesion on compliant substrates, as reported by experiments. We also show that the extent to which the compliance of the substrate modulates the growth rate of adhesion site depends on the areal density of cell-adhesive ligands on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu X, Lim J Y, Donahue H J, et al. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. Biomaterials, 28: 4535–4550, 2007.

    Article  Google Scholar 

  2. Morgenthaler S, Zink C and Spencer N D. Surface-chemical and morphological gradients. Soft Matter, 4: 419–434, 2008.

    Article  Google Scholar 

  3. Martin J Y, Schwartz Z, Hummert T W, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res, 29: 389–401, 1995.

    Article  Google Scholar 

  4. Lampin M, Warocquier C, Legris C, et al. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res, 42: 473–474, 1998.

    Article  Google Scholar 

  5. Chen C S, Mrksich M, Huang S, et al. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog, 14: 356–363, 1998.

    Article  Google Scholar 

  6. Christman K L, Enriquez-Rios V D and Maynard H D. Nanopatterning proteins and peptides. Soft Matter, 2: 928–939, 2006.

    Article  Google Scholar 

  7. Cavalcanti-Adam E A, Volberg T, Micoulet A, et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J, 92: 2964–2974, 2007.

    Article  Google Scholar 

  8. Discher D E, Janmey P and Wang Y. Tissue cells feel and respond to the stiffness of their substrate. Science, 310: 1139–1143, 2005.

    Article  Google Scholar 

  9. Peyton S R and Putnam A J. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol, 204: 198–209, 2005.

    Article  Google Scholar 

  10. McDaniel D P, Shaw G A, Elliott J T, et al. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys J, 92: 1759–1769, 2007.

    Article  Google Scholar 

  11. Engler A J, Griffin M A, Sen S, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications of stiff or soft microenvironments. J Cell Biol, 166: 877–887, 2004.

    Article  Google Scholar 

  12. Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification. Cell, 126: 677–89, 2006.

    Article  Google Scholar 

  13. Geiger B and Bershadsky A. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol, 13: 584–592, 2001.

    Article  Google Scholar 

  14. Sackmann E and Bruinsma R F. Cell adhesion as wetting transition. ChemPhysChem, 3: 262–269, 2002.

    Article  Google Scholar 

  15. Zaidel-Bar R and Kam Z, Geiger B. Polarized downregulation of the paxillinp130cas-Rac1 pathway induced by shear flow. J Cell Sci, 118: 3997–4007, 2005.

    Article  Google Scholar 

  16. Nicolas A, Safran S A. Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys J, 91: 61–73, 2006.

    Article  Google Scholar 

  17. Saez A, Buguin A, Silberzan P, et al. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J, 89: L52–L54, 2005.

    Article  Google Scholar 

  18. Schwarz U S. Soft matters in cell adhesion: Rigidity sensing on soft elastic substrates. Soft Matter, 3: 263–266, 2007.

    Article  Google Scholar 

  19. Chan P Y, Lawrence M B, Dustin M L, et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing Lfa-3 and Cd2. J. Cell Biol, 132: 465–474, 1996.

    Article  Google Scholar 

  20. Atilgan E, Ovryn B. Nucleation and growth of integrin adhesions. Biophys J, 96: 3555–3572, 2009.

    Article  Google Scholar 

  21. Boulbitch A, Guttenberg Z and Sackmann E. Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system. Biophys J, 81: 2743–2751, 2001.

    Article  Google Scholar 

  22. Freund L B and Lin Y. The role of receptor mobility in spontaneous adhesive contact and implications for cell adhesion. J Mech Phys Solids, 52: 2455–2472, 2004.

    Article  MATH  Google Scholar 

  23. Bongrand P and Bell GI. Cell-cell adhesion: Parameters and possible mechanisms. In A Perelson, C DeLisi, F Wiegel eds. Cell Surface Dynamics: Concepts and Models. Marcel Dekker Inc., New York, 459–493, 1984.

    Google Scholar 

  24. Zuckerman D and Bruinsma R. Statistical mechanics of membrane adhesion by reversible molecular bonds. Phys Rev Lett, 74: 3900–3903, 1995.

    Article  Google Scholar 

  25. Bell G I, Dembo M and Bongrand P. Cell adhesion: Competition between nonspecific repulsion and specific bonding. Biophys J, 45: 1051–1064, 1984.

    Article  Google Scholar 

  26. Evans E A. Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J, 43: 27–30, 1983.

    Article  Google Scholar 

  27. Needham D, Hochmuth R. A sensitive measure of surface stress in the resting neutrophil. Biophys J, 61: 1664–1670, 1992.

    Article  Google Scholar 

  28. Bausch A R, Ziemann F, Boulbitch A A, et al. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J, 75: 2038–2049, 1998.

    Article  Google Scholar 

  29. Goffin J M, Pittet P, Csucs G, et al. Focal adhesion size controls tensiondependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol, 172: 259–268, 2006.

    Article  Google Scholar 

  30. Engler A J, Bacakova L, Newman C, et al. Substrate compliance versus ligand density in cell on gel responses. Biophys J, 86: 617–628, 2004.

    Article  Google Scholar 

  31. Schwarz U S and Bischofs I B. Physical determinants of cell organization in soft media. Med Eng Phys, 27: 763–772, 2005.

    Article  Google Scholar 

  32. Torney C, Dembo M and Bell G I. Thermodynamics of cell adhesion II: Freely mobile repellers. Biophys J, 49: 501–507, 1986.

    Article  Google Scholar 

  33. Nicolas A, Geiger B and Safran S A. Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci USA, 101: 12520–12525, 2004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza S. Sarvestani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarvestani, A.S. (2011). Effect of Substrate Rigidity on the Growth of Nascent Adhesion Sites. In: Li, S., Sun, B. (eds) Advances in Cell Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17590-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17590-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17589-3

  • Online ISBN: 978-3-642-17590-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics