Cytoskeletal Mechanics and Rheology

Abstract

Cells are basic functional units of life and control a wide range of intra- and extra-cellular activities. They are highly complex structures with unique biomechanical properties to withstand the physiological environment as well as mechanical stimuli. Studies related to the mechanics of single cells are aimed at describing the molecular mechanisms responsible for the physical integrity of the cells as well as their biological functions. These studies have significant implications for biotechnology and human health. Recent advanced and innovative experimental techniques for measuring forces at piconewton resolutions and displacements over nano-meter scales have greatly facilitated this area of research. Moreover, tremendous research efforts have been devoted to the development of multiscale multiphysics computational models for the mechanical properties and functions of cells. This chapter reviews recent numerical and experimental studies in the area of cytoskeletal mechanics and rheology. For this purpose, basic modeling techniques for the mechanics of semiflexible actin filaments as well as various experimental and computational methods for measuring the mechanical behavior of cells are discussed.

Keywords

living cells cytoskeletal mechanics semiflexible actin filaments cell mechanobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Doi M and Edwards S F. The Theory of Polymer Dynamics. Clarendon Press, Oxford, 1988.Google Scholar
  2. [2]
    Howard J. Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland, MA, 2001.Google Scholar
  3. [3]
    Janmey P A, McCormick M E, Rammensee S, et al. Negative normal stress in semiflexible biopolymer gels. Nature Materials, 6: 48–51, 2007.CrossRefGoogle Scholar
  4. [4]
    Gardel M L, Shin J H, MacKintosh F C, et al. Elastic behavior of cross-linked and bundled actin networks. Science, 304: 1301–1305, 2004.CrossRefGoogle Scholar
  5. [5]
    Storm C, Pastore J J, MacKintosh F C, et al. Nonlinear elasticity in biological gels. Nature, 435: 191–194, 2005.CrossRefGoogle Scholar
  6. [6]
    Chaudhuri O, Parekh S H and Fletcher D A. Reversible stress softening of actin networks. Nature, 445: 295–298, 2007.CrossRefGoogle Scholar
  7. [7]
    Wen Q, Basu A, Winer J P, et al. Local and global deformations in a strainstiffening fibrin gel. New J. Phys., 9: 428, 2007.CrossRefGoogle Scholar
  8. [8]
    Chandran P L and Mofrad M R K. Rods-on-string idealization captures semiflexible filament dynamics. Phys. Rev. E, 79: 011906, 2009.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Chandran P L and Mofrad M R K. Averaged implicit hydrodynamic model of semiflexible filaments. Phys Rev E, 81(3): 031920, 2010.CrossRefGoogle Scholar
  10. [10]
    Mofrad M R K. Rheology of the cytoskeleton. Annu. Rev. Fluid Mech., 41: 433–453, 2009.CrossRefGoogle Scholar
  11. [11]
    Janmey P and Schmidt C. Experimental measurements of intracellular mechanics. In M R K Mofrad and R D Kamm eds. Cytoskeletal Mechanics: Models and Measurements, 18-49, 2006.Google Scholar
  12. [12]
    Crocker J C and Grier D G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci., 179: 298–310, 1996.CrossRefGoogle Scholar
  13. [13]
    Pralle A, Prummer M, Florin E L, et al. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech., 44: 378–86, 1999.CrossRefGoogle Scholar
  14. [14]
    Schnurr B, Gittes F, MacKintosh F C, et al. Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules, 30: 7781–7792, 1997.CrossRefGoogle Scholar
  15. [15]
    Crocker J C, Valentine M T, Weeks E R, et al. Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett., 85: 888–891, 2000.CrossRefGoogle Scholar
  16. [16]
    Levine A J and Lubensky T C. One-and two-particle microrheology. Phys. Rev. Lett., 85: 1774–77, 2000.CrossRefGoogle Scholar
  17. [17]
    Lau A W C, Hoffman B D, Davies A, et al. Microrheology, stress fluctuations and active behavior of living cells. Phys. Rev. Lett., 91: 198101, 2003.CrossRefGoogle Scholar
  18. [18]
    Lenormand G, Alencar A M, Trepat X, et al. The cytoskeleton of the living cell as an out-of-equilibrium system. In G H Pollack and W C Chin eds. Phase Transitions in Cell Biology. Springer Netherlands, 111–141, 2008.Google Scholar
  19. [19]
    Verdier C, Etienne J, Duperray A, et al. Review: Rheological properties of biological materials. C. R. Physique, 10: 790–811, 2009.CrossRefGoogle Scholar
  20. [20]
    Bray D. Axonal growth in response to experimentally applied mechanical tension. Dev. Biol., 102(2): 379–89, 1984.CrossRefGoogle Scholar
  21. [21]
    Heidemann S R, Kaech S, Buxbaum R E, et al. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell. Biol., 145: 109–22, 1999.CrossRefGoogle Scholar
  22. [22]
    Heidemann S R, Lamoureux P and Buxbaum R E. Mechanical stimulation of neurite assembly in cultured neurons. In L W Haynes ed. The Neuron in Tissue Culture. John Wiley and Sons Ltd., London, 105–119, 1999.Google Scholar
  23. [23]
    Daily B, Elson E L and Zahalak G L. Cell poking: Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophys. J., 45: 671–82, 1984.CrossRefGoogle Scholar
  24. [24]
    Duszyk M, Schwab B, Zahalak G I, et al. Cell poking: Quantitative analysis of indentation of thick viscoelastic layers. Biophys. J., 55(4): 683–690, 1989.CrossRefGoogle Scholar
  25. [25]
    Goldmann W H. Mechanical manipulation of animal cells: Cell indentation. Biotechnol. Lett., 22: 431–435, 2000.CrossRefGoogle Scholar
  26. [26]
    MacKintosh F C and Schmidt C F. Microrheology. Curr. Opin. Colloid Interface Sci., 4: 300–307, 1999.CrossRefGoogle Scholar
  27. [27]
    Mahaffy R E, Shih C K, MacKintosh F C, et al. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett., 85(4): 880–883, 2000.CrossRefGoogle Scholar
  28. [28]
    Mahaffy R E, Park S, Gerde E, et al. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J., 86(3): 1777–93, 2004.CrossRefGoogle Scholar
  29. [29]
    Putman C A, van der Werf K O, de Grooth B G, et al. Viscoelasticity of living cells allows high-resolution imaging by tapping mode atomic-force microscopy. Biophys. J., 67(4): 1749–53, 1994.CrossRefGoogle Scholar
  30. [30]
    Alcaraz J, Buscemi L, Grabulosa M, et al. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J., 84(3): 2071–2079, 2003.CrossRefGoogle Scholar
  31. [31]
    Alcaraz J, Buscemi L, Puig-De-Morales M, et al. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir, 18: 716–721, 2002.CrossRefGoogle Scholar
  32. [32]
    Marshall B T, Long M, Piper J W, et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature, 423: 190–193, 2003.CrossRefGoogle Scholar
  33. [33]
    Mitchison J and Swann M. The mechanical properties of the cell surface I: The cell elastimeter. J. Exp. Biol., 31: 445–459, 1954.Google Scholar
  34. [34]
    Evans E A and Hochmuth R M. Membrane viscoelasticity. Biophys. J., 16(1): 1–11, 1976.CrossRefGoogle Scholar
  35. [35]
    Chien S, Schmid-Schonbein G W, Sung K L, et al. Viscoelastic properties of leukocytes. Kroc. Found Ser., 16: 19–51, 1984.Google Scholar
  36. [36]
    Dong C, Skalak R, Sung K L, et al. Passive deformation analysis of human leukocytes. J. Biomech. Eng., 110: 27–36, 1988.CrossRefGoogle Scholar
  37. [37]
    Discher D E, Mohandas N and Evans E A. Molecular maps of red cell deformation: Hidden elasticity and in situ connectivity. Science, 266(5187): 1032–1035, 1994.CrossRefGoogle Scholar
  38. [38]
    Discher D E, Boal D H and Boey S K. Simulations of the erythrocyte cytoskeleton at large deformation II: Micropipette aspiration. Biophys J., 75: 1584–1597, 1998.CrossRefGoogle Scholar
  39. [39]
    Hochmuth R M. Micropipette aspiration of living cells. J. Biomech., 33: 15–22, 2000.CrossRefGoogle Scholar
  40. [40]
    Zhou E H, Quek S T and Lim C T. Power-law rheology analysis of cells undergoing micropipette aspiration. Biomech. Model Mechanobiol. doi: 10.1007/ s10237-010-0197-7, 2010.Google Scholar
  41. [41]
    Thoumine O and Ott A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell. Sci., 110: 2109–2116, 1997.Google Scholar
  42. [42]
    Thoumine O, Ott A, Cardoso O, et al. Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods, 39: 47–62, 1999.CrossRefGoogle Scholar
  43. [43]
    Desprat N, Richert A, Simeon J, et al. Creep function of a single living cell. Biophys. J., 88(3): 2224–2233, 2005.CrossRefGoogle Scholar
  44. [44]
    Weinbaum S, Zhang X B, Han Y F, et al. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA, 100: 7988–7995, 2003.CrossRefGoogle Scholar
  45. [45]
    Burger E H and Klein-Nulend J. Mechanotransduction in bone: Role of the lacuno-canalicular network. FASEB J., 13: S101–S112, 1999.Google Scholar
  46. [46]
    Jacobs C R, Yellowley C E, Davis B R, et al. Differential effect of steady versus oscillating flow on bone cells. J. Biomech., 31: 969–976, 1998.CrossRefGoogle Scholar
  47. [47]
    Bakker D, Soejima K, Klein-Nulend J, et al. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J. Biomech., 34: 671–677, 2001.CrossRefGoogle Scholar
  48. [48]
    Bacaba R G, Smit T H, Mullende M G, et al. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Comm., 315: 823–829, 2004.CrossRefGoogle Scholar
  49. [49]
    Zhang H and Liu K K. Optical tweezers for single cells. J. Royal Soc. Interface, 5(24): 671–690, 2008.CrossRefGoogle Scholar
  50. [50]
    Ashkin A and Dziedzic J M. Internal cell manipulation using infrared laser traps. Proc. Natl. Acad. Sci. USA, 86: 7914–7918, 1989.CrossRefGoogle Scholar
  51. [51]
    Evans E. Physical action in biological adhesion. In Handbook of Biological Physics, ed. R. Lipowsky and E. Sackmann. Elsevier, Amsterdam, 1995.Google Scholar
  52. [52]
    Valberg P A, Butler J P. Magnetic particle motions within living cells: Physical theory and techniques. Biophys. J., 52: 537–550, 1987.CrossRefGoogle Scholar
  53. [53]
    Bausch A R, Ziemann F, Boulbitch A A, et al. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J., 75: 2038–2049, 1998.CrossRefGoogle Scholar
  54. [54]
    Stamenovic D, Rosenblatt N, Montoya-Zavala M, et al. Rheological behavior of living cells is timescale-dependent. Biophys. J., 93(8): L39–L41, 2007.CrossRefGoogle Scholar
  55. [55]
    Fabry B, Maksym G, Butler J, et al. Scaling the microrheology of living cells. Phys. Rev. Lett., 87: 148102, 2001.CrossRefGoogle Scholar
  56. [56]
    Charras G T and Horton M A. Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J., 83: 858–79, 2002.CrossRefGoogle Scholar
  57. [57]
    Karcher H, Lammerding J, Huang H, et al. A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J., 85: 3336–3349, 2003.CrossRefGoogle Scholar
  58. [58]
    Trepat X, Grabulosa M, Buscemi L, et al. Oscillatory magnetic tweezers based on ferromagnetic beads and simple coaxial coils. Rev. Sci. Instrum., 74: 4012–4020, 2003.CrossRefGoogle Scholar
  59. [59]
    Trepat X, Deng L, An S S, et al. Universal physical responses to stretch in the living cell. Nature, 447: 592–595, 2007.CrossRefGoogle Scholar
  60. [60]
    Band R P and Burton A C. Mechanical properties of the red cell membrane I: Membrane stiffness and intracellular pressure. Biophys J., 4: 115–135, 1964.Google Scholar
  61. [61]
    Mijailovich S M, Kojic M, Zivkovic M, et al. A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol., 93: 1429–36, 2002.Google Scholar
  62. [62]
    Mack P J, Kaazempur-Mofrad M R, Karcher H, et al. Force induced focal adhesion translocation: Effects of force amplitude and frequency. Am J. Physiol. Cell Physiol, 287: C954–C962, 2004.CrossRefGoogle Scholar
  63. [63]
    Guilak F, Haider M A, Setton L A, et al. Mutiphasic models for cell mechanics. In M R K Mofrad and R Kamm eds. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, 2006.Google Scholar
  64. [64]
    Mofrad M R K and Kamm R. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, 2006.Google Scholar
  65. [65]
    Hatami-Marbini H, Picu R C. Modeling the mechanics of semiflexible biopolymer networks: Non-affine deformation and presence of long-range correlations. In Advances in Soft Matter Mechanics, 2011.Google Scholar
  66. [66]
    Head D A, Levine A J and MacKintosh F C. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys. Rev. E, 68(6): 061907, 2003.CrossRefGoogle Scholar
  67. [67]
    Wilhelm J and Frey E. Elasticity of stiff polymer networks. Phys. Rev. Lett., 91(10): 108103, 2003.CrossRefGoogle Scholar
  68. [68]
    Onck P R, Koeman T, van Dillen T, et al. Alternative explanation of stiffening in cross-linked semiflexible networks. Physi. Rev. Lett., 95(17): 178102, 2005.CrossRefGoogle Scholar
  69. [69]
    Heussinger C and Frey E. Stiff polymers, foams, and fiber networks. Phys. Rev. Letters, 96(1): 017802, 2006.CrossRefGoogle Scholar
  70. [70]
    Hatami-Marbini H and Picu R C. Scaling of nonaffine deformation in random semiflexible fiber networks. Phys. Rev E, 77: 062103, 2008.CrossRefGoogle Scholar
  71. [71]
    Hatami-Marbini H and Picu R C. Effect of fiber orientation on the non-affine deformation of random fiber networks. Acta Mechanica, 205: 77–84, 2009.MATHCrossRefGoogle Scholar
  72. [72]
    Hatami-Marbini H and Picu R C. Heterogeneous long-range correlated deformation of semiflexible random fiber networks. Phys. Rev. E, 80: 046703, 2009.CrossRefGoogle Scholar
  73. [73]
    Picu R C and Hatami-Marbini H. Long-range correlations of elastic fields in semi-flexible fiber networks. Computational Mechanics, 46(4): 635–640, 2010.MATHCrossRefGoogle Scholar
  74. [74]
    Kreis T and Vale R. Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins. Oxford University Press, 1999.Google Scholar
  75. [75]
    Winder S J and Ayscough K R. Actin-binding proteins. Journal of Cell Science, 118: 651–654, 2005.CrossRefGoogle Scholar
  76. [76]
    Mullins R D, Heuser J A and Pollard T D. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci., 95(11): 6181–6186, 1998.CrossRefGoogle Scholar
  77. [77]
    Koenderink G H, Dogic Z, Nakamura F, et al. An active biopolymer network controlled by molecular motors. Proc. Natl. Acad. Sci., 106(36): 5192–15197, 2009.Google Scholar
  78. [78]
    Burridge K, Fath K, Kelly T, et al. Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol., 4: 487–525, 1988.CrossRefGoogle Scholar
  79. [79]
    Burridge K and Chrzanowska-Wodnicka M. Focal adhesions, contractility and signaling. Annu. Rev. Cell Dev. Biol, 12: 463–519, 1996.CrossRefGoogle Scholar
  80. [80]
    Wechezak A, Viggers R and Sauvage L. Fibronectin and F-actin redistribution in cultured endothelial cells exposed to shear stress. Lab. Invest., 53: 639–647, 1985.Google Scholar
  81. [81]
    Galbraith C G, Skalak R and Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motility and the Cytoskeleton, 40(4): 317–330, 1998.CrossRefGoogle Scholar
  82. [82]
    Maniotis A J, Chen C S and Ingber D E. Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA, 94: 849–854, 1997.CrossRefGoogle Scholar
  83. [83]
    Chandran P L, Wolf C B and Mofrad M R K. Band-like stress fiber propagation in a continuum and implications for myosin contractile stresses. Cellular and Molecular Bioengineering, 2(1): 13–27, 2009.CrossRefGoogle Scholar
  84. [84]
    Lo C M, Wang H B, Dembo M, et al. Cell movement is guided by the rigidity of the substrate. Biophys. J., 79: 144–152, 2000.CrossRefGoogle Scholar
  85. [85]
    Saez A, Ghibaudo M, Buguin A, et al. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad Sci. USA, 104: 8281–8286, 2007.CrossRefGoogle Scholar
  86. [86]
    Lu L, Oswald S J, Ngu H, et al. Mechanical properties of actin stress fibers in living cells. Biophysical Journal, 95: 6060–6071, 2008.CrossRefGoogle Scholar
  87. [87]
    Sbrana F, Sassoli C, Meacci E, et al. Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am J Physiol Cell Physiol., 295: C160–C172, 2008.CrossRefGoogle Scholar
  88. [88]
    Martens J C and Radmacher M. Softening of the actin cytoskeleton by inhibition of myosin II. Pflugers Arch-Eur J Physiol., 456: 95–100, 2008.CrossRefGoogle Scholar
  89. [89]
    Sanger J M, Mittal B, Pochapin M B, et al. Stress fiber and cleavage furrow formation in living cells microinjected with fluorescently labeled α-actinin. Cell Motil. Cytoskeleton, 7: 209–220, 1987.CrossRefGoogle Scholar
  90. [90]
    Edulund M, Lotano M A, Otey C A. Dynamics of α-actinin in focal adhesions and stress fibers visualized with α-actinin-green fluorescent protein. Cell Motility and the Cytoskeleton, 48: 190–200, 2001.CrossRefGoogle Scholar
  91. [91]
    Maddox A S, Lewellyn L, Desai A, et al. Anillin and the septins promote symmetric ingression of the cytokinetic furrow. Dev. Cell, 12: 827–835, 2007.CrossRefGoogle Scholar
  92. [92]
    Kruse K, Joanny J F, Ju licher F, et al. Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett., 92(7): 078101, 2004.CrossRefGoogle Scholar
  93. [93]
    Backouche F, Haviv L, Groswasser D, et al. Active gels: dynamics of patterning and self-organization. Phys. Biol., 3: 264–273, 2006.CrossRefGoogle Scholar
  94. [94]
    Janson L W and Taylor D L. In vitro models of tail contraction and cytoplasmic streaming in amoeboid cells. J. Cell Biol., 123: 345–356, 1993.CrossRefGoogle Scholar
  95. [95]
    Bendix P M, Koenderink G H, Cuvelier D, et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J., 94: 3126–3136, 2008.CrossRefGoogle Scholar
  96. [96]
    Carlsson A E. Contractile stress generation by actomyosin gels. Phys. Rev. E, 74: 051912, 2006.CrossRefGoogle Scholar
  97. [97]
    Hatami-Marbini H, Mofrad M R K. Cytoskeletal mechanics and cellular mechanotransduction: A molecular perspective. In A Gefen ed. Cellular and Biomolecular Mechanics and Mechanobiology. Springer Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011.Google Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations