Skip to main content

Ionic Basis of the Pacemaker Activity of SA Node Revealed by the Lead Potential Analysis

  • Chapter
  • First Online:

Abstract

Ionic mechanisms of spontaneous action potential in sinoatrial (SA) node pacemaker cells have been discussed for decades. Although a number of theoretical studies have proposed different mathematical models, no scientific consensus has been achieved yet, because of the complexity and variations in experimental findings used for developing models. Here, we introduce a theoretical method in simulation study, the lead potential analysis, which enabled us to isolate the contribution of individual currents from the secondary effect of modified channel activities. We compared three models, suggesting different ionic mechanisms (Himeno et al. model, Kurata et al. model, and Maltsev and Lakatta model), and contributions of Ca2+ through activation of I NaCa is estimated. Finally, the effect of catecholamine stimulation is discussed based on a SA node cell model with β1-adrenergic signaling cascade and mechanisms of the positive chronotropy are analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilders R. Computer modelling of the sinoatrial node. Med Biol Eng Comput. 2007;45:189–207.

    Article  PubMed  Google Scholar 

  2. Wilders R, Jongsma HJ, van Ginneken AC. Pacemaker activity of the rabbit sinoatrial node. A comparison of mathematical models. Biophys J. 1991;60:1202–16.

    Article  PubMed  CAS  Google Scholar 

  3. Demir SS, Clark JW, Murphey CR, Giles WR. A mathematical model of a rabbit sinoatrial node cell. Am J Physiol. 1994;266:C832–52.

    PubMed  CAS  Google Scholar 

  4. Kurata Y, Hisatome I, Imanishi S, Shibamoto T. Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. Am J Physiol Heart Circ Physiol. 2002;283:H2074–101.

    PubMed  CAS  Google Scholar 

  5. Sarai N, Matsuoka S, Kuratomi S, Ono K, Noma A. Role of individual ionic current systems in the SA node hypothesized by a model study. Jpn J Physiol. 2003;53:125–34.

    Article  PubMed  Google Scholar 

  6. Himeno Y, Sarai N, Matsuoka S, Noma A. Ionic mechanisms underlying the positive chronotropy induced by beta1-adrenergic stimulation in guinea pig sinoatrial node cells: a simulation study. J Physiol Sci. 2008;58:53–65.

    Article  PubMed  CAS  Google Scholar 

  7. Maltsev VA, Lakatta EG. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol Heart Circ Physiol. 2009;296:H594–615.

    Article  PubMed  CAS  Google Scholar 

  8. Cha CY, Himeno Y, Shimayoshi T, Amano A and Noma A. A Novel Method to quantify contribution of channels and transporters to membrane potential dynamics. Biophys J. 2009;97(12):3086–94.

    Google Scholar 

  9. Hagiwara N, Irisawa H, Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 1988;395:233–53.

    PubMed  CAS  Google Scholar 

  10. Fermini B, Nathan RD. Removal of sialic acid alters both T- and L-type calcium currents in cardiac myocytes. Am J Physiol. 1991;260:H735–43.

    PubMed  CAS  Google Scholar 

  11. Guo J, Ono K, Noma A. A sustained inward current activated at the diastolic potential range in rabbit sino-atrial node cells. J Physiol. 1995;483(Pt 1):1–13.

    PubMed  CAS  Google Scholar 

  12. Guo J, Mitsuiye T, Noma A. The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflugers Arch. 1997;433:390–6.

    Article  PubMed  CAS  Google Scholar 

  13. Mitsuiye T, Guo J, Noma A. Nicardipine-sensitive Na+-mediated single channel currents in guinea-pig sinoatrial node pacemaker cells. J Physiol. 1999;521(Pt 1):69–79.

    Article  PubMed  CAS  Google Scholar 

  14. Cho HS, Takano M, Noma A. The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. J Physiol. 2003;550:169–80.

    Article  PubMed  CAS  Google Scholar 

  15. Shinagawa Y, Satoh H, Noma A. The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. J Physiol. 2000;523(Pt 3):593–605.

    Article  PubMed  CAS  Google Scholar 

  16. Toyoda F, Ding WG, Matsuura H. Responses of the sustained inward current to autonomic agonists in guinea-pig sino-atrial node pacemaker cells. Br J Pharmacol. 2005;144:660–8.

    Article  PubMed  CAS  Google Scholar 

  17. Ishihara H, Ozaki H, Sato K, et al. Calcium-independent activation of contractile apparatus in smooth muscle by calyculin-A. J Pharmacol Exp Ther. 1989;250:388–96.

    PubMed  CAS  Google Scholar 

  18. Hagiwara N, Irisawa H, Kasanuki H, Hosoda S. Background current in sino-atrial node cells of the rabbit heart. J Physiol. 1992;448:53–72.

    PubMed  CAS  Google Scholar 

  19. Tellez JO, Dobrzynski H, Greener ID, et al. Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res. 2006;99:1384–93.

    Article  PubMed  CAS  Google Scholar 

  20. Irisawa A. Fine structure of the small sinoatrial node specimen used for voltage clamp experiment. In: The sinusnode, structure, function and clinical relevance. (F.I.M. Bonke, ed.) The Hague: Martinus Nijihoff Medical Division, 1978, pp. 311–319.

    Google Scholar 

  21. Glukhovsky A, Adam DR, Amitzur G, Sideman S. Mechanism of Ca++ release from the sarcoplasmic reticulum: a computer model. Ann Biomed Eng. 1998;26:213–29.

    Article  PubMed  CAS  Google Scholar 

  22. Snyder SM, Palmer BM, Moore RL. A mathematical model of cardiocyte Ca(2+) dynamics with a novel representation of sarcoplasmic reticular Ca(2+) control. Biophys J. 2000;79:94–115.

    Article  PubMed  CAS  Google Scholar 

  23. Doerr T, Denger R, Trautwein W. Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflugers Arch. 1989;413:599–603.

    Article  PubMed  CAS  Google Scholar 

  24. Vinogradova TM, Zhou YY, Maltsev V, Lyashkov A, Stern M, Lakatta EG. Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94:802–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lyashkov AE, Juhaszova M, Dobrzynski H, et al. Calcium cycling protein density and functional importance to automaticity of isolated sinoatrial nodal cells are independent of cell size. Circ Res. 2007;100:1723–31.

    Article  PubMed  CAS  Google Scholar 

  26. Maltsev VA, Lakatta EG. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res. 2008;77:274–84.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrier GR. The effects of tension on acetylstrophanthidin-induced transient depolarizations and aftercontractions in canine myocardial and Purkinje tissues. Circ Res. 1976;38:156–62.

    PubMed  CAS  Google Scholar 

  28. Matsuda H, Noma A, Kurachi Y, Irisawa H. Transient depolarization and spontaneous voltage fluctuations in isolated single cells from guinea pig ventricles. Calcium-mediated membrane potential fluctuations. Circ Res. 1982;51:142–51.

    PubMed  CAS  Google Scholar 

  29. Matsuoka S, Sarai N, Jo H, Noma A. Simulation of ATP metabolism in cardiac excitation–contraction coupling. Prog Biophys Mol Biol. 2004;85:279–99.

    Article  PubMed  CAS  Google Scholar 

  30. Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD. Modeling beta-adrenergic control of cardiac myocyte contractility in silico. J Biol Chem. 2003;278:47997–8003.

    Article  PubMed  CAS  Google Scholar 

  31. Kuzumoto M, Takeuchi A, Nakai H, Oka C, Noma A, Matsuoka S. Simulation analysis of intracellular Na+ and Cl− homeostasis during beta 1-adrenergic stimulation of cardiac myocyte. Prog Biophys Mol Biol. 2008;96:171–86.

    Article  PubMed  CAS  Google Scholar 

  32. Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch AD. Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue. Circ Res. 2004;95:1216–24.

    Article  PubMed  CAS  Google Scholar 

  33. Kameyama M, Hofmann F, Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflugers Arch. 1985;405:285–93.

    Article  PubMed  CAS  Google Scholar 

  34. Zaza A, Robinson RB, DiFrancesco D. Basal responses of the L-type Ca2+ and hyperpolarization-activated currents to autonomic agonists in the rabbit sino-atrial node. J Physiol. 1996;491(Pt 2):347–55.

    PubMed  CAS  Google Scholar 

  35. Ono K, Shibata S, Iijima T. Pacemaker mechanism of porcine sino-atrial node cells. J Smooth Muscle Res. 2003;39:195–204.

    Article  PubMed  Google Scholar 

  36. Despa S, Bossuyt J, Han F, et al. Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res. 2005;97:252–9.

    Article  PubMed  CAS  Google Scholar 

  37. Ono K, Shibata S, Iijima T. Properties of the delayed rectifier potassium current in porcine sino-atrial node cells. J Physiol. 2000;524(Pt 1):51–62.

    Article  CAS  Google Scholar 

  38. Himeno Y, Toyoda F, Satoh H, Amano A, Cha CY, Matsuura H, Noma A. Minor contribution of cytosolic Ca2+ transients to the pacemaker rhythm in guinea pig sinoatrial node cells. Am J Physiol Heart Cric Physiol. 2011;300:H251–61.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Cluster Kansai project of Ministry of Education, Culture, Sports, Science and Technology Japan and Ritsumeikan-Global Innovation Research Organization in Ritsumeikan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Himeno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Himeno, Y., Cha, C.Y., Noma, A. (2011). Ionic Basis of the Pacemaker Activity of SA Node Revealed by the Lead Potential Analysis. In: Tripathi, O., Ravens, U., Sanguinetti, M. (eds) Heart Rate and Rhythm. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17575-6_2

Download citation

Publish with us

Policies and ethics