Advertisement

Visibility Levels: Managing the Tradeoff between Visibility and Resource Consumption

  • Junyan Ma
  • Kay Römer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6511)

Abstract

Pre-deployment tests of sensor networks in indoor testbeds can only deliver a very approximate view of the correctness and performance of a deployed sensor network and it is therefore common that after deployment problems and failures occur that could not be observed during pre-deployment tests. Finding and fixing such problems requires visibility of the system state, such that an engineer can identify causes of misbehavior. Unfortunately, exposing the internal state of sensor nodes requires resources such as communication bandwidth and energy: the better visibility of system state is required, the more resources are needed to extract that state from the sensor network. In this paper we propose a concept and tool that give the user explicit control over this tradeoff. Essentially, the user can specify a resource budget and our tool strives to provide best possible visibility while not exceeding the resource budget. We present the design of our vLevels framework and report the results of a case study demonstrating that the overhead of our approach is small and that visibility is automatically adjusted to meet the specified resource budget.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Resource Consumption Buffer Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He, T., Krishnamurthy, S., Lou, L., Son, S., Stankovic, J., Stoleru, R., Wood, A.: Envirotrack: Towards an environmental computing paradigm for distributed sensor networks. In: Proc. ICDCS 2004, pp. 582–589. IEEE Computer Society, Washington (2004)Google Scholar
  2. 2.
    Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., Luo, L.: Declarative tracepoints: a programmable and application independent debugging system for wireless sensor networks. In: Proc. SenSys 2008, pp. 85–98. ACM, New York (2008)Google Scholar
  3. 3.
    Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogramming wireless sensor networks. In: Proc. SenSys 2006, pp. 15–28. ACM, New York (2006)Google Scholar
  4. 4.
    Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system for tiny networked sensors. In: Proc. LCN 2004, pp. 455–462. IEEE Computer Society, Washington (2004)Google Scholar
  5. 5.
    Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter, R., Marrón, P.J.: Cooja/mspsim: interoperability testing for wireless sensor networks. In: Proc. SIMUTools 2009, pp. 27–27. ICST, Brussels (2009)Google Scholar
  6. 6.
    Kicales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Lachenmann, A., Marrón, P.J., Minder, D., Rothermel, K.: Meeting lifetime goals with energy levels. In: Proc. SenSys 2007, pp. 131–144. ACM, New York (2007)Google Scholar
  8. 8.
    Luo, L., He, T., Zhou, G., Gu, L., Abdelzaher, T.F., Stankovic, J.A.: Achieving repeatability of asynchronous events in wireless sensor networks with envirolog. In: Proc. INFOCOM 2006, pp. 1–14. IEEE Press, New York (2006)Google Scholar
  9. 9.
    Necula, G.C., Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools for analysis and transformation of c programs. In: Parra, G. (ed.) CC 2002. LNCS, vol. 2304, pp. 209–265. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympathy for the sensor network debugger. In: Proc. SenSys 2005, pp. 255–267. ACM, New York (2005)Google Scholar
  11. 11.
    Ringwald, M., Römer, K., Vitaletti, A.: Passive inspection of sensor networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 205–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Römer, K., Ma, J.: PDA: Passive distributed assertions for sensor networks. In: Proc. IPSN 2009, pp. 337–348. IEEE Computer Society, Washington (2009)Google Scholar
  13. 13.
    Rost, S., Balakrishnan, H.: Memento: A health monitoring system for wireless sensor networks. In: IEEE SECON 2006, pp. 575–584. IEEE Press, New York (2006)Google Scholar
  14. 14.
    Shea, R., Srivastava, M., Cho, Y.: Lis is more: Improved diagnostic logging in sensor networks with log instrumentation specifications. Tech. Rep. TR-UCLA-NESL-200906-01 (June 2009)Google Scholar
  15. 15.
    Tsiftes, N., Dunkels, A., He, Z., Voigt, T.: Enabling large-scale storage in sensor networks with the coffee file system. In: Proc. IPSN 2009, pp. 349–360. IEEE Computer Society, Washington (2009)Google Scholar
  16. 16.
    Wachs, M., Choi, J.I., Lee, J.W., Srinivasan, K., Chen, Z., Jain, M., Levis, P.: Visibility: a new metric for protocol design. In: Proc. SenSys 2007, pp. 73–86. ACM, New York (2007)Google Scholar
  17. 17.
    Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta, P., Culler, D.: Marionette: using rpc for interactive development and debugging of wireless embedded networks. In: Proc. IPSN 2006, pp. 416–423. ACM, New York (2006)Google Scholar
  18. 18.
    Yang, J., Soffa, M.L., Selavo, L., Whitehouse, K.: Clairvoyant: a comprehensive source-level debugger for wireless sensor networks. In: Proc. SenSys 2007, pp. 189–203. ACM, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Junyan Ma
    • 1
    • 2
  • Kay Römer
    • 2
    • 3
  1. 1.School of Computer ScienceNorthwestern Polytechnical UniversityChina
  2. 2.Institute for Pervasive ComputingETH ZurichSwitzerland
  3. 3.Institute of Computer EngineeringUniversity of LübeckGermany

Personalised recommendations