Computing the Discrete Fréchet Distance with Imprecise Input

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6507)


We consider the problem of computing the discrete Fréchet distance between two polygonal curves when their vertices are imprecise. An imprecise point is given by a region and this point could lie anywhere within this region. By modelling imprecise points as balls in dimension d, we present an algorithm for this problem that returns in time \(2^{O(d^2)} m^2n^2\log^2(mn)\) the Fréchet distance lower bound between two imprecise polygonal curves with n and m vertices, respectively. We give an improved algorithm for the planar case with running time O( mn log2(mn) + (m 2 + n 2)log(mn)). In the d-dimensional orthogonal case, where points are modelled as axis-parallel boxes, and we use the L  ∞  distance, we give an O(dmn log(dmn))-time algorithm.

We also give efficient O(dmn)-time algorithms to approximate the Fréchet distance upper bound, as well as the smallest possible Fréchet distance lower/upper bound that can be achieved between two imprecise point sequences when one is allowed to translate them. These algorithms achieve constant factor approximation ratios in “realistic” settings (such as when the radii of the balls modelling the imprecise points are roughly of the same size).


Delaunay Triangulation Decision Algorithm Euclidean Case Euclidean Ball Constant Factor Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. Computing Surveys 30(4), 412–458 (1998)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17(3), 292–318 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5, 75–91 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the Fréchet distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for curves, revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 52–63. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Dyer, M.E.: A class of convex programs with applications to computational geometry. In: Proc. 8th Symposium on Computational Geometry, pp. 9–15. ACM, New York (1992)Google Scholar
  8. 8.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. Rep. CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)Google Scholar
  10. 10.
    Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing 13(1), 14–30 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise input data. In: Proc. 15th Canadian Conference on Computational Geometry, pp. 94–97 (2003)Google Scholar
  12. 12.
    Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. In: ISAAC. LNCS, vol. 5878, pp. 720–729. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for imprecise points. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 375–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time after preprocessing. Computational Geometry: Theory and Applications 43(3), 234–242 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Computational Geometry: Theory and Applications 37(3), 162–174 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sember, J., Evans, W.: Guaranteed Voronoi diagrams of uncertain sites. In: Proc. 20th Annual Canadian Conference on Computational Geometry (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPOSTECHPohangKorea
  2. 2.Institute of Computer ScienceUniversität BayreuthBayreuthGermany
  3. 3.Institute of Computer ScienceFreie Universität BerlinBerlinGermany
  4. 4.INRAUR 341 Mathématiques et Informatique AppliquéesJouy-en-JosasFrance

Personalised recommendations