Skip to main content

Approximating the Traveling Tournament Problem with Maximum Tour Length 2

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

Abstract

We consider the traveling tournament problem, which is a well-known benchmark problem in tournament timetabling. The most important variant of the problem imposes restrictions on the number of consecutive home games or away games a team may have. We consider the case where at most two consecutive home games or away games are allowed. We show that the well-known independent lower bound for this case cannot be reached and present an approximation algorithm that has an approximation ratio of \(3/2+\frac{6}{n-4}\), where n is the number of teams in the tournament. In the case that n is divisible by 4, this approximation ratio improves to \(3/2+\frac{5}{n-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Campbell, R.T., Chen, D.S.: A minimum distance basketball scheduling problem. In: [13], pp. 15–25

    Google Scholar 

  3. Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: A combined integer programming and constraint programming approach. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–109. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the travelling tournament problem. Journal of Scheduling 9(2), 177–193 (2006)

    Article  MATH  Google Scholar 

  5. Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament problem. In: Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT) (2008)

    Google Scholar 

  6. Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the traveling tournament problem. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 679–688. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. In: Proceedings of the 8th International Conference on the Practice and Theory of Automated Timetabling (PATAT) (2010)

    Google Scholar 

  8. Thielen, C., Westphal, S.: Complexity of the Traveling Tournament Problem. Theoretical Computer Science (2010) (online first), doi:10.1016/j.tcs.2010.10.001

    Google Scholar 

  9. Bhattacharyya, R.: A note on complexity of traveling tournament problem. Optimization Online (2009)

    Google Scholar 

  10. Kendall, G., Knust, S., Ribeiro, C., Urrutia, S.: Scheduling in sports: An annotated bibliography. Computers and Operations Research 37(1), 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rasmussen, R., Trick, M.: Round robin scheduling - a survey. European Journal of Operations Research 188, 617–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Werra, D.: Scheduling in sports. In: [14], pp. 381–395

    Google Scholar 

  13. Machol, R.E., Ladany, S.P., Morrison, D. (eds.): Management Science in Sports. Studies in the Management Sciences, vol. 4. North-Holland Publishing Company, Amsterdam (1976)

    MATH  Google Scholar 

  14. Hansen, P.: Studies on Graphs and Discrete Programming. Annuals of Discrete Mathematics, vol. 11. North-Holland Publishing Company, Amsterdam (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thielen, C., Westphal, S. (2010). Approximating the Traveling Tournament Problem with Maximum Tour Length 2. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics