Approximate Shortest Homotopic Paths in Weighted Regions

  • Siu-Wing Cheng
  • Jiongxin Jin
  • Antoine Vigneron
  • Yajun Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6507)


Let P be a path between two points s and t in a polygonal subdivision \(\mathcal T\) with obstacles and weighted regions. Given a relative error tolerance ε ∈ (0,1), we present the first algorithm to compute a path between s and t that can be deformed to P without passing over any obstacle and the path cost is within a factor 1 + ε of the optimum. The running time is \(O(\frac{h^3}{\varepsilon^2}kn\,\mathrm{polylog}(k,n,\frac{1}{\varepsilon}))\), where k is the number of segments in P and h and n are the numbers of obstacles and vertices in \(\mathcal T\), respectively. The constant in the running time of our algorithm depends on some geometric parameters and the ratio of the maximum region weight to the minimum region weight.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52, 25–53 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bespamyatnikh, S.: Computing homotopic shortest paths in the plane. J. Alg. 49, 284–303 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Testing Homotopy for Paths in the Plane. Discr. Comput. Geom. 31, 61–81 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Efrat, A., Kobourov, S.G., Lubiw, A.: Computing homotopic shortest paths efficiently. Comput. Geom. Theory and Appl. 35, 162–172 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th Annu. Sympos. Found. Comput. Sci., pp. 137–143 (1997)Google Scholar
  6. 6.
    Forbus, K.D., Uhser, J., Chapman, V.: Qualitative spatial reasoning about sketch maps. AI Magazine 24, 61–72 (2004)Google Scholar
  7. 7.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gao, S., Jerrum, M., Kaufmann, M., Kehlhorn, K., Rülling, W., Storb, C.: On continuous homotopic one layer routing. In: Proc. 4th Annu. Sympos. Comput. Geom., pp. 392–402 (1998)Google Scholar
  9. 9.
    Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. Theory and Appl. 4, 63–98 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kaufmann, M., Mehlhorn, K.: On local routing of two-terminal nets. J. Comb. Theory, Ser. B 55, 33–72 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Leiserson, C.E., Maley, F.M.: Algorithms for routing and testing routability of planar VLSI layouts. In: Proc. 17th Annu. Sympos. Theory of Comput., pp. 69–78 (1985)Google Scholar
  12. 12.
    Mitchell, J., Papadimitriou, C.: The weighted region problem: Finding shortest paths through a weighted planar subdivision. J. ACM 38, 18–73 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sun, Z., Reif, J.: On finding approximate optimal paths in weighted regions. J. Alg. 58, 1–32 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Siu-Wing Cheng
    • 1
  • Jiongxin Jin
    • 1
  • Antoine Vigneron
    • 2
  • Yajun Wang
    • 3
  1. 1.Department of Computer Science and EngineeringHKUSTHong Kong
  2. 2.INRAUR 341 Mathématiques et Informatique AppliquéesJouy-en-JosasFrance
  3. 3.Microsoft Research AsiaBeijingChina

Personalised recommendations