D2-Tree: A New Overlay with Deterministic Bounds

  • Gerth Stølting Brodal
  • Spyros Sioutas
  • Kostas Tsichlas
  • Christos Zaroliagis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6507)


We present a new overlay, called the Deterministic Decentralized tree (D 2-tree). The D 2-tree compares favourably to other overlays for the following reasons: (a) it provides matching and better complexities, which are deterministic for the supported operations; (b) the management of nodes (peers) and elements are completely decoupled from each other; and (c) an efficient deterministic load-balancing mechanism is presented for the uniform distribution of elements into nodes, while at the same time probabilistic optimal bounds are provided for the congestion of operations at the nodes.


Load Balance Range Query Overlay Network Adjacent Node Distribute Hash Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arge, L., Eppstein, D., Goodrich, M.T.: Skip-Webs: Efficient Distributed Data Structures for Multidimensional Data Sets. In: Proc. of the 24th PODC, pp. 69–76 (2005)Google Scholar
  2. 2.
    Arge, L., Vitter, J.: Optimal External Memory Interval Management. SIAM Journal on Computing 32(6), 1488–1508 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load-balancing and Locality in Range-Queriable Data Structures. In: Proc. of the 23rd PODC, pp. 115–124 (2004)Google Scholar
  4. 4.
    Aspnes, J., Shah, G.: Skip Graphs. In: Proc. of the 14th SODA, pp. 384–393 (2003)Google Scholar
  5. 5.
    Brodal, G.S., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-Tree: A New Overlay with Deterministic Bounds (September 2010),
  6. 6.
    Li, D., Cao, J., Lu, X., Chan, K.C.C.: Efficient Range Query Processing in Peer-to-Peer Systems. IEEE Transactions on Knowledge and Data Engineering 21(1), 78–91 (2009)CrossRefGoogle Scholar
  7. 7.
    Gasenan, P., Bawa, M., Garcia-Molina, H.: Online Balancing of range-Partitioned Data with Applications to Peer-to-Peer Systems. In: Proc. of the 13th VLDB, pp. 444–455 (2004)Google Scholar
  8. 8.
    Goodrich, M.T., Nelson, M.J., Sun, J.Z.: The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree Distributed Data Structure. In: Proc. of the 17th SODA, pp. 384–393 (2006)Google Scholar
  9. 9.
    Harvey, N., Munro, J.I.: Deterministic SkipNet. In: Proc. of the 22nd PODC, pp. 152–153 (2003)Google Scholar
  10. 10.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: a Balanced Tree Structure for Peer-to-Peer Networks. In: Proc. of the 31st VLDB, pp. 661–672 (2005)Google Scholar
  11. 11.
    Karger, D., Kaashoek, F., Stoica, I., Morris, R., Balakrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proc. of the SIGCOMM, pp. 149–160 (2001)Google Scholar
  12. 12.
    Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small world. In: 4th USENIX Symp. on Internet Technologies and Systems (2003)Google Scholar
  13. 13.
    Manku, G.S., Naor, M., Wieder, U.: Know thy Neighbor’s Neighbor: the Power of Lookahead in Randomized P2P Networks. In: Proc. of the 36th STOC, pp. 54–63 (2004)Google Scholar
  14. 14.
    Rowstron, A., Druschel, P.: Pastry: A Scalable, Decentralized Object Location, and routing for large-scale peer-to-peer systems. In: Liu, H. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Zatloukal, K.C., Harvey, N.J.A.: Family trees: An Ordered Dictionary with Optimal Congestion, Locality, Degree and Search Time. In: Proc. of the 15th SODA, pp. 301–310 (2004)Google Scholar
  16. 16.
    Zhang, Y., Liu, L., Li, D., Liu, F., Lu, X.: DHT-Based Range Query Processing for Web Service Discovery. In: Proc. of the 2009 IEEE ICWS, pp. 477–484 (2009)Google Scholar
  17. 17.
    Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Communications 22(1), 41–53 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gerth Stølting Brodal
    • 1
  • Spyros Sioutas
    • 2
  • Kostas Tsichlas
    • 3
  • Christos Zaroliagis
    • 4
    • 5
  1. 1.MADALGO (Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation)Aarhus UniversityDenmark
  2. 2.Department of InformaticsIonian UniversityGreece
  3. 3.Department of InformaticsAristotle University of ThessalonikiGreece
  4. 4.Dept. of Computer Engineering & InformaticsUniversity of PatrasGreece
  5. 5.CTIUniversity of PatrasGreece

Personalised recommendations