Skip to main content

Cluster Editing: Kernelization Based on Edge Cuts

  • Conference paper
Parameterized and Exact Computation (IPEC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6478))

Included in the following conference series:

Abstract

Kernelization algorithms for the cluster editing problem have been a popular topic in the recent research in parameterized computation. Thus far most kernelization algorithms for this problem are based on the concept of critical cliques. In this paper, we present new observations and new techniques for the study of kernelization algorithms for the cluster editing problem. Our techniques are based on the study of the relationship between cluster editing and graph edge-cuts. As an application, we present an \({\cal O}(n^2)\)-time algorithm that constructs a 2k kernel for the weighted version of the cluster editing problem. Our result meets the best kernel size for the unweighted version for the cluster editing problem, and significantly improves the previous best kernel of quadratic size for the weighted version of the problem.

Supported in part by the US NSF under the Grants CCF-0830455 and CCF-0917288.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), Article 23, 1–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkhin, P.: A survey of clustering data mining techniques. In: Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. In: CoRR, abs/0907.2165 (2009)

    Google Scholar 

  6. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: evaluation and experiments. Algorithmica (in press)

    Google Scholar 

  7. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: parameterized algorithms for cluster editing. Theoretical Computer Science 410, 5467–5480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. Journal of Computer and System Sciences 71(3), 360–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. In: COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)

    Google Scholar 

  10. Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. Siam J. Comp. 32(4), 864–879 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad. J. Math. 32(3), 734–765 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dean, J., Henzinger, M.R.: Finding related pages in the World Wide Web. Computer Networks 31, 1467–1479 (1999)

    Article  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  14. Feige, U.: Faster FAST. In: CoRR, abs/0911.5094 (2009)

    Google Scholar 

  15. Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis: scatter/gather on retrieval results. In: Proceedings of SIGIR, pp. 76–84 (1996)

    Google Scholar 

  20. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament. In: CoRR, abs/1006.4396 (2010)

    Google Scholar 

  21. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: ACM Symposium on Theory of Computing (STOC), pp. 95–103 (2007)

    Google Scholar 

  22. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discrete Math. 19(95), 257–355 (1984)

    MathSciNet  MATH  Google Scholar 

  23. de Montgolfier, F.: Décomposition modulaire des graphes. Théorie, extensions et algorithmes. Thése de doctorat, Université Montpellier II (2003)

    Google Scholar 

  24. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  25. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1-2), 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Mathematics of Operations Research 34(3), 594–620 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, Y., Chen, J. (2010). Cluster Editing: Kernelization Based on Edge Cuts. In: Raman, V., Saurabh, S. (eds) Parameterized and Exact Computation. IPEC 2010. Lecture Notes in Computer Science, vol 6478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17493-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17493-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17492-6

  • Online ISBN: 978-3-642-17493-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics