Skip to main content

Abstract

Model-based 1st order homogenization for stationary problems was recently extended to transient problems. Along with the classical averages, a higher order conservation quantity in the macroscale problem is then obtained. This effect depends on the size of the “subscale computational cell” (denoted RVE) that is subjected to different prolongation conditions (Dirichlet, Neumann). The issue addressed in this paper is how to choose the optimal size of the RVE in order to obtain the best possible fit to the single-scale solution. It turns out that there is a trade-off between the RVE-size and the macroscale mesh diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fish, J., Chen, W., Nagai, G.: Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int. J. Numer. Meth. Eng. 54, 331–346 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Larsson, F., Runesson, K., Su, F.: Variationally consistent computational homogenization of transient heat flow. Int. J. Numer. Meth. Eng. 81, 1659–1686 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Meth. Eng. 54, 1235–1260 (2002)

    Article  MATH  Google Scholar 

  4. Özdemir, I., Brekelmans, W.A.M., Geers, M.: Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Meth. Eng. 73, 185–204 (2008)

    Article  MATH  Google Scholar 

  5. Temizer, I., Wriggers, P.: Thermal contact conductance characterization via computational contact homogenization: a finite deformation theory framework. Int. J. Numer. Meth. Eng. 83, 27–58 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Temizer, I., Wriggers, P.: Homogenization in finte thermoelasticity. J. Mech. Phys. Solids (2010), doi:10.1016/j.jmps.2010.10.004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Runesson, K., Su, F., Larsson, F. (2011). Assessment of Homogenization Errors in Transient Problems. In: Mueller-Hoeppe, D., Loehnert, S., Reese, S. (eds) Recent Developments and Innovative Applications in Computational Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17484-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17484-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17483-4

  • Online ISBN: 978-3-642-17484-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics