Advertisement

Assessing Validity of the Dead Zone Model to Characterize Transport of Contaminants in the River Wkra

  • Magdalena M. Mrokowska
  • Marzena Osuch
Chapter
Part of the Geoplanet: Earth and Planetary Sciences book series (GEPS, volume 1)

Abstract

The objective of this chapter is to establish the validity of one-dimensional dead zone model to characterize transport of passive and conservative pollutants in the Wkra River basing on a tracer test. In the study, optimization methods prove inadequate to obtain reliable results. Therefore, uncertainty estimation and sensitivity analysis (SA) have been applied. The results indicate equifinality. Moreover, the sensitivity analysis shows that transient storage in dead zones has a small impact on model predictions.

Keywords

Monte Carlo Breakthrough Curve Tracer Test Global Sensitivity Analysis Generalize Likelihood Uncertainty Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Archer G, Saltelli A, Sobol IM (1997) Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J Stat Comput Simul 58:99–120CrossRefGoogle Scholar
  2. Aronica G, Hankin B, Beven K (1998) Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Adv Water Resour 22(4):349–365CrossRefGoogle Scholar
  3. Bencala KE, Walters RA (1983) Simulation of solute transport in a mountain pool and riffle stream: a transient storage model. Water Resour Res 19(3):718–724CrossRefGoogle Scholar
  4. Beven KJ (2006) A manifesto for the equifinality thesis. J Hydrol 320:18–36CrossRefGoogle Scholar
  5. Beven KJ (2008) Environmental modelling: an uncertain future? Routledge, LondonGoogle Scholar
  6. Blasone R-S, Vrugt JA, Madsen H, Rosbjerg D, Robinson BA, Zyvoloski GA (2008) Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour 31:630–648CrossRefGoogle Scholar
  7. Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methotology. J Hydrol 330:368–381Google Scholar
  8. Moradkhani H, Hsu K-L, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41(5):1–17CrossRefGoogle Scholar
  9. Montanari A (2005) Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resour Res 41:W 08406. doi:10.1029/2004WR003826Google Scholar
  10. Mrokowska MM (2010) Modelling of passive contaminants spreading in Wkra river based on a tracer test. Master thesis, Warsaw University of Life SciencesGoogle Scholar
  11. Owczarczyk A, Wierzchnicki R, Palige J (1997) Wykonanie pomiaru znacznikowego dyspersji podłużnej na wybranym odcinku rzeki Wkry. Report IChTJ C/2/97 Institute of Nuclear Chemistry and TechnologyGoogle Scholar
  12. Price KH, Storn RM, Lampinen JA (2005) Differential Evolution A Practical Approach to Global Optimization. Springer, Berlin HeidelbergGoogle Scholar
  13. Ratto M, Tarantola S, Saltelli A (2001) Sensitivity analysis in model calibration: GSA-GLUE approach. Comput Phys Commun 136:212–224CrossRefGoogle Scholar
  14. Romanowicz R, Beven K (2006) Comments on generalized likelihood uncertainty estimation. Reliab Eng Syst Saf 91:1215–1321CrossRefGoogle Scholar
  15. Rowiński PM, Dysarz T, Napiórkowski JJ (2004) Estimation of longitudinal dispersion and storage zone parameters. In: Greco M, Caravetta A, Della Morte R (eds) River flow. Taylor & Francis, LondonGoogle Scholar
  16. Runkel RL (1998) One-dimensional transport with inflow an storage (OTIS): a solute transport model for streams and rivers: U.S. Geological Survey water-Resources Investigation Report. 98-4018. http://co.water.usgs.gov/otis/documentation/primary/. Accessed 7 Sept 2009
  17. Runkel RL (2000) Using OTIS to model solute transport in streams and rivers: U.S. U.S. Department of the Interior U. S. Geological Survey. Geological Survey Fact Sheet FS-138-99. http://co.water.usgs.gov/otis/documentation/primary/. Accessed 7 Sept 2009
  18. Saltelli A, Tarantola A, Campolongo F, Ratto M (2004) Sensitivity analysis in practice – a guide to assessing scientific models. Wiley, ChichesterGoogle Scholar
  19. Saltelli A, Ratto AM, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M (2008) Global sensitivity analysis. The primer. Wiley, ChichesterGoogle Scholar
  20. Smith P, Beven KJ, Tawn J (2008) Informal likelihood measures in model assessment: theoretic development and investigation. Adv Water Resour 31:1087–1100CrossRefGoogle Scholar
  21. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280CrossRefGoogle Scholar
  22. Stedinger JR, Vogel RM, Lee SU, Batchelder R (2008) Appraisal of generalized uncertainty estimation (GLUE) method. Water Resources Research 44. doi:  10.1029/2008WR006822
  23. Tychonoff AN, Arsenin VY (1977) Solution of ill-posed problems. Winston & Sons, Washington. ISBN 0-470-99124-0Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Hydrology and HydrodynamicsInstitute of Geophysics Polish Academy of SciencesWarsawPoland

Personalised recommendations