Advertisement

Transporting Jobs through a Processing Center with Two Parallel Machines

  • Hans Kellerer
  • Alan J. Soper
  • Vitaly A. Strusevich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6508)

Abstract

In this paper, we consider a processing system that consists of two identical parallel machines such that the jobs are delivered to the system by a single transporter and moved between the machines by the same transporter. The objective is to minimize the length of a schedule, i.e., the time by which the completed jobs are collected together on board the transporter. The jobs can be processed with preemption, provided that the portions of jobs are properly transported to the corresponding machines. We establish properties of feasible schedule, define lower bounds on the optimal length and describe an algorithm that behaves like a fully polynomial-time approximation scheme (FPTAS).

Keywords

scheduling with transportation parallel machines FPTAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brucker, P., Knust, S., Cheng, T.C.E., Shakhlevich, N.V.: Complexity results for flow-shop and open-shop scheduling problems with transportation delays. Ann. Oper. Res. 129, 81–106 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dell’Amico, M.: Shop problems with two machines and time lags. Oper. Res. 44, 777–787 (1996)CrossRefzbMATHGoogle Scholar
  3. 3.
    Hall, L.A.: Approximability of flow shop scheduling. Math. Progr. B 82, 175–190 (1998)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Hurink, J., Knust, S.: Makespan minimization for flow-shop problems with transportation times and a single robot. Discrete Appl. Math. 112, 199–216 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully polynomial approximation scheme for the Subset-Sum Problem. J. Comput. Syst. Sci. 66, 349–370 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lee, C.-Y., Chen, Z.-L.: Machine scheduling with transportation times. J. Schedul. 4, 3–24 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lee, C.-Y., Strusevich, V.A.: Two-machine shop scheduling with an uncapacitated interstage transporter. IIE Trans. 37, 725–736 (2005)CrossRefGoogle Scholar
  9. 9.
    Lushchakova, I.N., Soper, A.J., Strusevich, V.A.: Transporting jobs through a two-machine open shop. Naval. Res. Log. 56, 1–18 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Qi, X.: A logistic scheduling model: scheduling and transshipment for two processing centers. IIE Trans. 38, 609–618 (2006)CrossRefGoogle Scholar
  11. 11.
    Soper, A.J., Strusevich, V.A.: An improved approximation algorithm for the two-machine flow shop scheduling problem with an interstage transporter. Int J. Found. Computer Sci. 18, 565–591 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Strusevich, V.A.: A heuristic for the two-machine open-shop scheduling problem with transportation times. Discrete Appl. Math. 93, 287–304 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yu, W., Hoogeveen, H., Lenstra, J.K.: Minimizing makespan in a two-machine flow shop with delays and unit-time operations is NP-hard. J. Schedul. 7, 333–348 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans Kellerer
    • 1
  • Alan J. Soper
    • 2
  • Vitaly A. Strusevich
    • 2
  1. 1.Institut für Statistik und Operations ResearchUniversität GrazGrazAustria
  2. 2.School of Computing and Mathematical SciencesUniversity of GreenwichLondonU.K.

Personalised recommendations