Skip to main content

Evacuation of Rectilinear Polygons

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6508))

Abstract

We investigate the problem of creating fast evacuation plans for buildings that are modeled as grid polygons, possibly containing exponentially many cells. We study this problem in two contexts: the “confluent” context in which the routes to exits remain fixed over time, and the “non-confluent” context in which routes may change. Confluent evacuation plans are simpler to carry out, as they allocate contiguous regions to exits; non-confluent allocation can possibly create faster evacuation plans. We give results on the hardness of creating the evacuation plans and strongly polynomial algorithms for finding confluent evacuation plans when the building has two exits. We also give a pseudo-polynomial time algorithm for non-confluent evacuation plans. Finally, we show that the worst-case bound between confluent and non-confluent plans is \(2-O(\frac{1}{k})\).

This research was funded by the German Ministry for Education and Research (BMBF) under grant number 03NAPI4 “ADVEST”, which fully funded Chris Gray.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bast, H., Hert, S.: The area partitioning problem. In: Proc. 12th Can. Conf. Comput. Geom. (CCCG 2000), Fredericton, NB, Canada, pp. 163–171 (2000)

    Google Scholar 

  2. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Math. Oper. Res. 34(2), 499–512 (2009); Journal version of 2006 FOCS article Solving evacuation problems efficiently

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R., Lari, I., Lucertini, M., Simeone, B.: Max-min partitioning of grid graphs into connected components. Networks 32(2), 115–125 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fekete, S.P., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. Technical report (2010), http://arxiv.org/abs/1008.4420

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics 17, 416–429 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Györi, E.: On division of graphs to connected subgraphs. Combinatorics, Keszthely, 485–494 (1978)

    Google Scholar 

  8. Lovász, L.: A homology theory for spanning trees of a graph. Acta Mathematica Hungarica 30(3), 241–251 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lumelsky, V.: Polygon area decomposition for multiple-robot workspace division. Int. Journal of Computational Geometry and Applications 8(4), 437–466 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, J., Ma, S.: An O(k 2 n 2) algorithm to find a k-partition in a k-connected graph. Journal of Computer Science and Technology 9(1), 86–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moore, C., Robson, J.: Hard tiling problems with simple tiles. Discrete and Computational Geometry 26(4), 573–590 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Salgado, L.R., Wakabayashi, Y.: Approximation results on balanced connected partitions of graphs. Electr. Notes in Discrete Mathematics 18, 207–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Skutella, M.: An introduction to network flows over time. In: Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Suzuki, H., Takahashi, N., Nishizeki, T.: A linear algorithm for bipartition of biconnected graphs. Information Processing Letters 33(5), 227–231 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fekete, S., Gray, C., Kröller, A. (2010). Evacuation of Rectilinear Polygons. In: Wu, W., Daescu, O. (eds) Combinatorial Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science, vol 6508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17458-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17458-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17457-5

  • Online ISBN: 978-3-642-17458-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics