High Speed Flexible Pairing Cryptoprocessor on FPGA Platform

  • Santosh Ghosh
  • Debdeep Mukhopadhyay
  • Dipanwita Roychowdhury
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6487)


This paper presents a Pairing Crypto Processor (PCP) over Barreto-Naehrig curves (BN curves). The proposed architecture is specifically designed for field programmable gate array (FPGA) platforms. The design of PCP utilizes the efficient implementation of the underlying finite field primitives. The techniques proposed maximize the utilization of in-built features of an FPGA device which significantly improves the performance of the primitives.

Extensive parallelism techniques have been proposed to realize a PCP which requires lesser clock cycles than the existing designs. The proposed design is the first reported result on an FPGA platform for 128-bit security. The PCP provides flexibility to choose the curve parameters for pairing computations.

The cryptoprocessor needs 1730 k, 1206 k, and 821 k cycles for the computation of Tate, ate, and R-ate pairings, respectively. On a Virtex-4 FPGA device it consumes 52 kSlices at 50MHz and computes the Tate, ate, and R-ate pairings in 34.6 ms, 24.2 ms, and 16.4 ms, respectively, which is comparable to known CMOS implementations.


\(\mathbb{F}_{p^{k}}\)-arithmetic FPGA Barreto-Naehrig curves elliptic-curve cryptography (ECC) pairing-based cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryptographic pairings. Cryptology ePrint Archive, Report 2010/186,
  2. 2.
    Granger, R., Scott, M.: Faster Squaring in the Cyclotomic Subgroup of Sixth Degree Extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High Speed F p Multipliers and Adders on FPGA Platform. In: DASIP 2010, Scotland (2010)Google Scholar
  4. 4.
    Beuchat, J.L., Díaz, J.E.G., Mitsunari, S., Okamoto, E., Henríquez, F.R., Teruya, T.: High-Speed Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves. Cryptology ePrint Archive, Report 2010/354,
  5. 5.
    Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras, D., Ascheid, G., Mathar, R.: Designing an ASIP for cryptographic pairings over Barreto-Naehrig curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 254–271. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Fan, J., Vercauteren, F., Verbauwhede, I.: Faster F p-arithmetic for cryptographic pairings on Barreto-Naehrig curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on abelian varieties. Cryptology ePrint Archive, Report 2009/040,
  9. 9.
    Beuchat, J., Detrey, J., Estibals, N., Okamoto, E., Rodríguez-Henríguez, F.: Hardware accelerator for the Tate pairing in characteristic three based on Karatsuba-Ofman multipliers. Cryptology ePrint Archive, Report 2009/122 (2009)Google Scholar
  10. 10.
    Xilinx ISE Design Suit (2009),
  11. 11.
    Hoffstein, J., Pipher, J., Silverman, J.H.: An introduction to mathmatical cryptography. Springer, Heidelberg (2008)Google Scholar
  12. 12.
    Barenghi, A., Bertoni, G., Breveglieri, L., Pelosi, G.: A FPGA coprocessor for the cryptographic Tate pairing over F p. In: Proc. Fifth Intl. Conf. Information Technology: New Generations - ITNG 2008, pp. 112–119 (2008)Google Scholar
  13. 13.
    Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of cryptographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 35–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Rebeiro, C., Mukhopadhyay, D.: High speed compact elliptic curve cryptoprocessor for FPGA platforms. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 376–388. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography (2008)Google Scholar
  16. 16.
    Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Barke, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management - part 1: General (revised). National Institute of Standards and Technology, NIST Special Publication 800-57 (2007)Google Scholar
  18. 18.
    Shu, C., Kwon, S., Gaj, K.: FPGA accelerated Tate pairing based cryptosystems over binary fields. In: FPT 2006, pp. 173–180 (2006)Google Scholar
  19. 19.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transactions on Information Theory 52(10), 4595–4602 (2006)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Devegili, A., ÓhÉigeartaigh, C., Scott, M., Dahab, R.: Multiplication and squaring on pairing-friendly fields. Cryptology ePrint Archive, Report 2006/471 (2006)Google Scholar
  22. 22.
    Amanor, D.N., Paar, C., Pelzl, J., Bunimov, V., Schimmler, M.: Efficient hardware architectures for modular multiplication on FPGAs. In: International Conference on Field Programmable Logic and Applications 2005, pp. 539–542 (2005)Google Scholar
  23. 23.
    Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in projective coordinate over general characteristic fields. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Galbraith, S.: Pairings. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds.) Advances in Elliptic Curve Cryptography. London Mathematical Society Lecture Note Series, ch. IX, Cambridge University Press, Cambridge (2005)Google Scholar
  25. 25.
    Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology 17, 235–261 (2004)CrossRefMATHGoogle Scholar
  26. 26.
    Bunimov, V., Schimmler, M.: Area and time efficient modular multiplication of large integers. In: ASAP 2003. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  27. 27.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Joye, M., Yen, S.M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)Google Scholar
  29. 29.
    Hauck, S., Hosler, M.M., Fry, T.W.: High-performance carry chains for FPGAs. In: FPGA 1998, pp. 223–233 (1998)Google Scholar
  30. 30.
    Blakley, G.R.: A computer algorithm for calculating the product A*B modulo M. IEEE Transactions on Computers C-32(5), 497–500 (1983)CrossRefGoogle Scholar
  31. 31.
    Sloan, K.R.: Comments on a computer algorithm for calculating the product A*B modulo M. IEEE Transactions on Computers C-34(3), 290–292 (1985)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Santosh Ghosh
    • 1
  • Debdeep Mukhopadhyay
    • 1
  • Dipanwita Roychowdhury
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations