Skip to main content

Encoding Points on Hyperelliptic Curves over Finite Fields in Deterministic Polynomial Time

  • Conference paper
Pairing-Based Cryptography - Pairing 2010 (Pairing 2010)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6487))

Included in the following conference series:

Abstract

We provide new hash functions into (hyper)elliptic curves over finite fields. These functions aim at instantiating in a secure manner cryptographic protocols where we need to map strings into points on algebraic curves, typically user identities into public keys in pairing-based IBE schemes.

Contrasting with recent Icart’s encoding, we start from ”easy to solve by radicals” polynomials in order to obtain models of curves which in turn can be deterministically ”algebraically parameterized”. As a result of this strategy, we obtain a low degree encoding map for Hessian elliptic curves, and for the first time, hashing functions for genus 2 curves. More generally, we present for any genus (more narrowed) families of hyperelliptic curves with this property.

The image of these encodings is large enough to be ”weak” encodings in the sense of Brier et al. As such they can be easily turned into admissible cryptographic hash functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 54.49
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Mathematics of Computation 61(203), 29–68 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bersntein, D.J., Kohel, D., Lange, T.: Twisted Hessian curves, http://www.hyperelliptic.org/EFD/g1p/auto-twistedhessian.html

  3. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Borger, R.L.: On De Moivre’s quintic. The American Mathematical Monthly 15(10), 171–174 (1908)

    Article  MathSciNet  Google Scholar 

  5. Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System I: The user language. J. Symb. Comput. 24(3/4), 235–265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010), http://eprint.iacr.org/2009/340/

    Chapter  Google Scholar 

  7. Cardona, G., Quer, J.: Curves of genus 2 with group of automorphisms isomorphic to D 8 or D 12. Trans. Amer. Math. Soc. 359, 2831–2849 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cox, D.A.: Galois theory. In: Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], Hoboken (2004)

    Google Scholar 

  9. Farashahi, R.R., Joye, M.: Efficient Arithmetic on Hessian Curves. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Farashahi, R.R., Fouque, P.-A., Shparlinski, I.E., Tibouchi, M., Felipe Voloch, J.: Indifferentiable deterministic hashing to elliptic and hyperelliptic curves. Preprint (2010), http://www.ma.utexas.edu/users/voloch/Preprints/welldistributed.pdf

  11. Farashahi, R.R.: Hashing into hessian curves. Cryptology ePrint Archive, Report 2010/373 (2010), http://eprint.iacr.org/

  12. Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyperelliptic curves. Cryptology ePrint Archive, Report 2010/382 (2010), http://eprint.iacr.org/

  13. Icart, T.: How to Hash into Elliptic Curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Waterloo Maple Incorporated. Maple. Waterloo, Ontario, Canada, http://www.maplesoft.com/

  15. Sendra, J.R., Winkler, F., Prez-Diaz, S.: Rational Algebraic Curves: A Computer Algebra Approach. Springer Publishing Company, Incorporated, Heidelberg (2007)

    Google Scholar 

  16. Shallue, A., van de Woestijne, C.: Construction of Rational Points on Elliptic Curves over Finite Fields. In: Hess, F., Pauli, S., Pohst, M.E. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish Acad. Sci. Math. (55), 97–104 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kammerer, JG., Lercier, R., Renault, G. (2010). Encoding Points on Hyperelliptic Curves over Finite Fields in Deterministic Polynomial Time. In: Joye, M., Miyaji, A., Otsuka, A. (eds) Pairing-Based Cryptography - Pairing 2010. Pairing 2010. Lecture Notes in Computer Science, vol 6487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17455-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17455-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17454-4

  • Online ISBN: 978-3-642-17455-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics