Supporting Flexible Competency Frameworks

  • Erica Melis
  • Arndt Faulhaber
  • Ahmad Salim Doost
  • Carsten Ullrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6483)


Since Bloom’s initial work on competencies in 1956, various competency systems have been designed and used to assess students’ competencies. Different pedagogical researchers and stakeholders prefer different systems. We have been collaborating with them. Such systems are essential for the adaptation by adaptive intelligent tutoring systems. Now, this paper presents how ActiveMath integrates several competency systems to bridge the gap between different competency systems and thereby facilitating the reuse of learning objects across system boundaries. The combination of competency-related data is achieved by mapping a new competency system to the internal one.


Competency System Student Model Course Generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, L., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., Wittrock, M.: A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxomnomy of Edicational Objectives. Longman, New York (2001)Google Scholar
  2. 2.
    Assche, F.V.: Linking content to curricula by using competencies. In: First International Workshop on Learning Object Discovery and Exchange (2007)Google Scholar
  3. 3.
    Bloom, B. (ed.): Taxonomy of educational objectives: The classification of educational goals: Handbook I, cognitive domain. Longmans, Green (1956)Google Scholar
  4. 4.
    Brusilovsky, P., Vassileva, J.: Course sequencing techniques for large-scale webbased education. International Journal of Continuing Engineering Education and Lifelong Learning 13(1/2), 75–94 (2003)CrossRefGoogle Scholar
  5. 5.
    Cen, H., Koedinger, K., Junker, B.: Learning factor analysis - a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    De Bra, P., Houben, G.J., Wu, H.: AHAM: a Dexter-based reference model for adaptive hypermedia. In: Proceedings of the Tenth ACM Conference on Hypertext and Hypermedia, HYPERTEXT 1999, pp. 147–156. ACM Press, New York (1999)Google Scholar
  7. 7.
    Klieme, E., Avenarius, H., Blum, W., Döbrich, P., Gruber, H., Prenzel, M., Reiss, K., Riquarts, K., Rost, J., Tenorth, H., Vollmer, H.J.: The development of national educational standards - an expertise. Tech. rep., German Federal Ministry of Education and Research (2004)Google Scholar
  8. 8.
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS, vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Libbrecht, P., Desmoulins, C.: A cross-curriculum representation for handling and searching dynamic geometry competencies. In: Semantic Web Technologies for e-Learning, vol. 4, pp. 136–155. IOS Press, Amsterdam (2009)Google Scholar
  10. 10.
    Melis, E., Faulhaber, A., Eichelmann, A., Narciss, S.: Interoperable competencies characterizing learning objects in mathematics. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 416–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ullrich, C., Winterstein, S.: Semantic-Aware Components and Services of ActiveMath. British Journal of Educational Technology 37(3), 405–423 (2006)CrossRefGoogle Scholar
  12. 12.
    Niss, M.: Mathematical competencies and the learning of mathematics: the danish KOM project. Tech. rep., IMFUFA, Roskilde University (2002)Google Scholar
  13. 13.
    OECD (ed.): Measuring Student Knowledge and Skills – A New Framework for Assessment. OECD Publishing, Paris (1999)Google Scholar
  14. 14.
    OECD: PISA – the OECD programme for international student assessment. Brochure (2007)Google Scholar
  15. 15.
    Paquette, G.: An ontology and a software framework for competency modeling and management. Educational Technology & Society 10(3), 1–21 (2007)Google Scholar
  16. 16.
    Pardos, Z., Heffernan, N., Anderson, B., Heffernan, C.: The effect of model granularity on student performance prediction using bayesian networks. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 435–439. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Reinmann-Rothmeier, G., Mandl, H.: Unterrichten und Lernumgebungen gestalten. Pädagogische Psychologie. Ein Lehrbuch, pp. 601–646. Beltz PVU (2001)Google Scholar
  18. 18.
    Richardson, J.J., Soloway, E., Polson, M.C.: Foundations of intelligent tutoring systems. L. Erlbaum Associates, Hillsdale (1988)Google Scholar
  19. 19.
    Ullrich, C.: Courseware Generation for Web-Based Learning. LNCS (LNAI), vol. 5260. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Erica Melis
    • 1
  • Arndt Faulhaber
    • 2
  • Ahmad Salim Doost
    • 2
  • Carsten Ullrich
    • 3
  1. 1.DFKI GmbHSaarbrueckenGermany
  2. 2.Saarland UniversitySaarbrueckenGermany
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations