Separating Invariants

  • H. E. A. Eddy CampbellEmail author
  • David L. Wehlau
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 139)


The original and possibly most important use of invariants is to detect whether two mathematical objects are equivalent under some transformation. For example, given two matrices, we may wish to decide whether or not they are conjugate. If their eigenvalues differ, then they cannot be conjugate. In other words, the eigenvalues serve to partially distinguish non-conjugate matrices. Separating invariants typically play a similar role.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Sir Howard Douglas Hall, Dept. MathematicsUniversity of New BrunswickFrederictonCanada
  2. 2.Dept. Mathematics & Computer ScienceRoyal Military College of CanadaKingstonCanada

Personalised recommendations