Introduction and Background Information

Chapter

Abstract

>Any exponents of classical organic chemistry might probably hesitate to consider a biochemical solution for one of their synthetic problems. This would be due to the fact, that biological systems would have to be handled. Where the growth and maintenance of whole microorganisms is concerned, such hesitation is probably justified. In order to save endless frustrations, close collaboration with a microbiologist or a biochemist is highly recommended to set up and use fermentation systems [1, 2]. On the other hand, isolated enzymes (which may be obtained increasingly easily from commercial sources either in a crude or partially purified form) can be handled like any other chemical catalyst.

References

  1. 1.
    Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9Google Scholar
  2. 2.
    Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Baross JA, Deming JW (1983) Nature 303: 423Google Scholar
  4. 4.
    Hough DW, Danson MJ (1999) Curr. Opinion Chem. Biol. 3: 39Google Scholar
  5. 5.
    Prieur D (1997) Trends Biotechnol. 15: 242Google Scholar
  6. 6.
    Feyerabend P (1988) Against Method. Verso, LondonGoogle Scholar
  7. 7.
    Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81Google Scholar
  8. 8.
    Carrea G, Ottolina G, Riva S (1995) Trends Biotechnol. 13: 63Google Scholar
  9. 9.
    Bell G, Halling PJ, Moore BD, Partridge J, Rees DG (1995) Trends Biotechnol. 13: 468Google Scholar
  10. 10.
    Koskinen AMP, Klibanov AM (eds) (1996) Enzymatic Reactions in Organic Media. Blackie Academic & Professional, LondonGoogle Scholar
  11. 11.
    Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol. 52, pp 87–128, Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Wolfenden R, Snider MJ (2001) Acc. Chem. Res. 34: 938Google Scholar
  13. 13.
    Menger FM (1993) Acc. Chem. Res. 26: 206Google Scholar
  14. 14.
    Zechel DL, Withers SG (2000) Acc. Chem. Res. 33: 11Google Scholar
  15. 15.
    Garcia-Junceda E (2008) Multi-step Enzyme Catalysis. Wiley-VCH, WeinheimGoogle Scholar
  16. 16.
    Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298Google Scholar
  17. 17.
    Boland W, Frößl C, Lorenz M (1991) Synthesis 1049Google Scholar
  18. 18.
    Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology. Verlag Chemie, Weinheim, vol 6a, pp 387–419Google Scholar
  19. 19.
    Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037Google Scholar
  20. 20.
    Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc., Chem. Commun. 1120Google Scholar
  21. 21.
    Zhang D, Poulter CD (1993) J. Am. Chem. Soc. 115: 1270Google Scholar
  22. 22.
    Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087Google Scholar
  23. 23.
    Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256Google Scholar
  24. 24.
    Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153Google Scholar
  25. 25.
    Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes. Wiley, New YorkGoogle Scholar
  26. 26.
    Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527Google Scholar
  27. 27.
    Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9Google Scholar
  28. 28.
    May SW (1979) Enzyme Microb. Technol. 1: 15Google Scholar
  29. 29.
    Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113: 667Google Scholar
  30. 30.
    Walsh CT, Chen YCJ (1988) Angew. Chem., Int. Ed. 27: 333Google Scholar
  31. 31.
    Servi S (1990) Synthesis 1Google Scholar
  32. 32.
    Koszelewski D, Lavandera I, Clay D, Guebitz G, Rozzell D, Kroutil W (2010) Angew. Chem., Int. Ed. 47: 9337Google Scholar
  33. 33.
    Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838Google Scholar
  34. 34.
    Akhtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899Google Scholar
  35. 35.
    Effenberger F, Ziegler T (1987) Angew. Chem., Int. Ed. 26: 458Google Scholar
  36. 36.
    Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood, ChichesterGoogle Scholar
  37. 37.
    Stecher H, Twengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M (2009) Angew. Chem., Int. Ed. 48: 9546Google Scholar
  38. 38.
    Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457Google Scholar
  39. 39.
    Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Tetrahedron 54: 8841Google Scholar
  40. 40.
    Ohta H (1999) Adv. Biochem. Eng. Biotechnol. 63: 1Google Scholar
  41. 41.
    Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203Google Scholar
  42. 42.
    Fuganti C, Grasselli P (1988) Baker's Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, vol 389, pp 359–370Google Scholar
  43. 43.
    Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365Google Scholar
  44. 44.
    Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc., Chem. Commun. 1331Google Scholar
  45. 45.
    Pohl M, Lingen B, Müller M (2002) Chem. Eur. J. 8: 5288Google Scholar
  46. 46.
    Durchschein K, Ferreira-da Silva B, Wallner S, Macheroux P, Kroutil W, Glueck SM, Faber K (2010) Green Chem. 12: 616Google Scholar
  47. 47.
    Williams RM (2002) Chem. Pharm. Bull. 50: 711Google Scholar
  48. 48.
    Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc., Chem. Commun. 1321Google Scholar
  49. 49.
    Pohnert G (2001) ChemBioChem 2: 873Google Scholar
  50. 50.
    Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189Google Scholar
  51. 51.
    Ganem B (1996) Angew. Chem., Int. Ed. 35: 936Google Scholar
  52. 52.
    Bornscheuer UT, Kazlauskas RJ (2004) Angew. Chem., Int. Ed. 43: 6032Google Scholar
  53. 53.
    Hult K, Berglund P (2007) Trends Biotechnol. 25: 231Google Scholar
  54. 54.
    Walsh C (2001) Nature 409: 226Google Scholar
  55. 55.
    Khersonsky O, Roodveldt C, Tawfik DS (2006) Curr. Opinion Chem. Biol. 10: 498Google Scholar
  56. 56.
    O'Brien PJ, Herschlag D (1999) Chem. Biol. 6: R91Google Scholar
  57. 57.
    Kazlauskas RJ (2005) Curr. Opinion Chem. Biol. 9: 195Google Scholar
  58. 58.
    Penning TM, Jez JM (2001) Chem. Rev. 101: 3027Google Scholar
  59. 59.
    Sweers HM, Wong CH (1986) J. Am. Chem. Soc. 108: 6421Google Scholar
  60. 60.
    Bashir NB, Phythian SJ, Reason AJ, Roberts SM (1995) J. Chem. Soc., Perkin Trans. 1, 2203Google Scholar
  61. 61.
    Jung G (1992) Angew. Chem., Int. Ed. 31: 1457Google Scholar
  62. 62.
    Sih CJ, Wu SH (1989) Topics Stereochem. 19: 63Google Scholar
  63. 63.
    Fischer E (1898) Zeitschr. physiol. Chem. 26: 60Google Scholar
  64. 64.
    Crossley R (1992) Tetrahedron 48: 8155Google Scholar
  65. 65.
    De Camp WH (1989) Chirality 1: 2Google Scholar
  66. 66.
    Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides. Elsevier, Amsterdam, pp 39–108Google Scholar
  67. 67.
    Crosby J (1997) Introduction. In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in Industry II, pp 1–10, Wiley, ChichesterGoogle Scholar
  68. 68.
    Millership JS, Fitzpatrick A (1993) Chirality 5: 573Google Scholar
  69. 69.
    Borman S (1992) Chem. Eng. News, June 15: 5Google Scholar
  70. 70.
    FDA (1992) Chirality 4: 338Google Scholar
  71. 71.
    US Food & Drug Administration (2004) Pharmaceutical Current Good Manufacturing Practices (cGMPs) for the 21st Century – a Risk-Based Approach: Final ReportGoogle Scholar
  72. 72.
    Farina V, Reeves JT, Senanayake CH, Song JJ (2006) Chem. Rev. 106: 2734Google Scholar
  73. 73.
    Agranat H, Caner H, Caldwell J (2002) Nat. Rev. Drug Discov. 1: 753Google Scholar
  74. 74.
    Sheldon RA (1993) Chirotechnology. Marcel Dekker, New YorkGoogle Scholar
  75. 75.
    Collins AN, Sheldrake GN, Crosby J (eds) (1992, 1997) Chirality in Industry, 2 vols. Wiley, ChichesterGoogle Scholar
  76. 76.
    Morrison JD (ed) (1985) Chiral catalysis. In: Asymmetric Synthesis, vol 5. Academic Press, LondonGoogle Scholar
  77. 77.
    Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach. Pergamon Press, OxfordGoogle Scholar
  78. 78.
    Scott JW (1984) Readily available chiral carbon fragments and their use in synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis. Academic Press, New York, vol 4, pp 1-226Google Scholar
  79. 79.
    Margolin AL (1993) Enzyme Microb. Technol. 15: 266Google Scholar
  80. 80.
    Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas R (2008) Angew. Chem. Int. Ed. 47: 8782Google Scholar
  81. 81.
    Phillips RS (1996) Trends Biotechnol. 14: 13Google Scholar
  82. 82.
    Schuster M, Aaviksaar A, Jakubke HD (1990) Tetrahedron 46: 8093Google Scholar
  83. 83.
    Yeh Y, Feeney (1996) Chem. Rev. 96: 601Google Scholar
  84. 84.
    Klibanov AM (1990) Acc. Chem. Res. 23: 114Google Scholar
  85. 85.
    D'Arrigo P, Fuganti C, Pedrocchi-Fantoni G, Servi S (1998) Tetrahedron 54: 15017Google Scholar
  86. 86.
    Anfinsen CB (1973) Science 181: 223Google Scholar
  87. 87.
    Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95Google Scholar
  88. 88.
    Ahern TJ, Klibanov AM (1985) Science 228: 1280Google Scholar
  89. 89.
    Adams MWW, Kelly RM (1998) Trends Biotechnol. 16: 329Google Scholar
  90. 90.
    Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50Google Scholar
  91. 91.
    Jencks WP (1969) Catalysis in Chemistry and Enzymology. McGraw-Hill, New YorkGoogle Scholar
  92. 92.
    Fersht A (1985) Enzyme Structure and Mechanism, 2nd edn. Freeman, New YorkGoogle Scholar
  93. 93.
    Walsh C (ed) (1979) Enzymatic Reaction Mechanism. Freeman, San FranciscoGoogle Scholar
  94. 94.
    Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985Google Scholar
  95. 95.
    Lichtenthaler FW (2003) Angew. Chem., Int. Ed. 33: 2364Google Scholar
  96. 96.
    Koshland DE (1958) Proc. Natl. Acad. Sci. USA 44: 98Google Scholar
  97. 97.
    Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359Google Scholar
  98. 98.
    Gerstein M, Lesk AM, Chotia C (1994) Biochemistry 33: 6739Google Scholar
  99. 99.
    Dewar MJS (1986) Enzyme 36: 8Google Scholar
  100. 100.
    Lipscomb WN (1982) Acc. Chem. Res. 15: 232Google Scholar
  101. 101.
    Warshel A, Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. USA 86: 5820Google Scholar
  102. 102.
    Page M I (1977) Angew. Chem. 89: 456Google Scholar
  103. 103.
    Ottosson J, Rotticci-Mulder JC, Rotticci D, Hult K (2001) Protein Sci. 10: 1769Google Scholar
  104. 104.
    Lipscomb WN (1982) Acc. Chem. Res. 15: 232Google Scholar
  105. 105.
    Ottosson J, Fransson L, Hult K (2002) Protein Sci. 11: 1462Google Scholar
  106. 106.
    Johnson LN (1984) Inclusion Compds. 3: 509Google Scholar
  107. 107.
    Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Chem. Rev. 106: 3210Google Scholar
  108. 108.
    Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303: 186Google Scholar
  109. 109.
    Masgrau L, Roujeinikova A, Johanissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D (2006) Science 312: 237Google Scholar
  110. 110.
    Ogston AG (1948) Nature 162: 963Google Scholar
  111. 111.
    Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ, Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part I. Wiley, New York, pp 1–46Google Scholar
  112. 112.
    Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Scappini AM, Ruzziconi R (1997) Tetrahedron 53: 11853Google Scholar
  113. 113.
    Kielbasinski P, Goralczyk P, Mikolajczyk M, Wieczorek MW, Majzner WR (1998) Tetrahedron: Asymmetry 9: 2641Google Scholar
  114. 114.
    Eyring H (1935) J. Chem. Phys. 3: 107Google Scholar
  115. 115.
    Kraut J (1988) Science 242: 533Google Scholar
  116. 116.
    Wong CH (1989) Science 244: 1145Google Scholar
  117. 117.
    Wolfenden R (1999) Bioorg. Med. Chem. 7: 647Google Scholar
  118. 118.
    International Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature. Academic Press, New YorkGoogle Scholar
  119. 119.
    Schomburg D (ed) (2002) Enzyme Handbook. Springer, HeidelbergGoogle Scholar
  120. 120.
    Appel RD, Bairoch A, Hochstrasser DF (1994) Trends Biochem. Sci. 19: 258Google Scholar
  121. 121.
    Bairoch A (1999) Nucl. Acids Res. 27: 310; <http://www.expasy.ch/enzyme/>
  122. 122.
    Kindel S (1981) Technology 1: 62Google Scholar
  123. 123.
    Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, vol 5. pp 1–114Google Scholar
  124. 124.
    Farina V (2004) Adv. Synth. Catal. 346: 1553Google Scholar
  125. 125.
    Behr A (2007) Angewandte Homogene Katalyse. Wiley-VCH, Weinheim, p 40Google Scholar
  126. 126.
    Mahler HR, Cordes HE (1971) Biological Chemistry, 2nd ed. Harper & Row, LondonGoogle Scholar
  127. 127.
    Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. 24: 539Google Scholar
  128. 128.
    Chaplin MF, Bucke C (1990) Enzyme Technology. Cambridge University Press, New YorkGoogle Scholar
  129. 129.
    White JS, White DC (1997) Source Book of Enzymes. CRC Press, Boca RatonGoogle Scholar
  130. 130.
    Spradlin JE (1989) Tailoring Enzymes for Food Processing, in: Whitaker JR, Sonnet PE(eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc., WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Chemistry Organic & Bioorganic ChemistryUniversity of GrazGrazAustria

Personalised recommendations