Skip to main content

Multiobjective Particle Swarm Optimization for Optimal Power Flow Problem

  • Chapter
Handbook of Swarm Intelligence

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 8))

Abstract

A novel approach to multiobjective particle swarm optimization (MOPSO) technique for solving optimal power flow (OPF) problem is proposed in this chapter. The new MOPSO technique evolves a multiobjective version of PSO by proposing redefinition of global best and local best individuals in multiobjective optimization domain. A clustering algorithm to manage the size of the Pareto-optimal set is imposed. The proposed MOPSO technique has been implemented to solve the OPF problem with competing and non-commensurable cost and voltage stability enhancement objectives. The optimization runs of the proposed approach have been carried out on a standard test system. The results demonstrate the capabilities of the proposed MOPSO technique to generate a set of well-distributed Pareto-optimal solutions in one single run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsac, O., Stott, B.: Optimal Load Flow with Steady State Security. IEEE Trans. on Power Apparatus and Systems PAS-93, 745–751 (1974)

    Article  Google Scholar 

  2. Shoults, R., Sun, D.: Optimal Power Flow Based on P-Q Decomposition. IEEE Trans. on Power Apparatus and Systems PAS-101(2), 397–405 (1982)

    Article  Google Scholar 

  3. Happ, H.H.: Optimal Power Dispatch- A comprehensive Survey. IEEE Trans. on Power Apparatus and Systems PAS-96, 841–854 (1977)

    Article  Google Scholar 

  4. Mamandur, K.R.C., Chenoweth, R.D.: Optimal Control of Reactive Power Flow for Improvements in Voltage profiles and for Real Power Loss Minimization. IEEE Trans. on Power Apparatus and Systems PAS-100(7), 3185–3193 (1981)

    Article  Google Scholar 

  5. Habiabollahzadeh, H., Luo, G.X., Semlyen, A.: Hydrothermal Optimal Power Flow Based on a Combined Linear and Nonlinear Programming Methodology. IEEE Trans. on Power Systems PWRS-4(2), 530–537 (1989)

    Article  Google Scholar 

  6. Burchett, R.C., Happ, H.H., Vierath, D.R.: Quadratically Convergent Optimal Power Flow. IEEE Trans. on Power Apparatus and Systems PAS-103, 3267–3276 (1984)

    Article  Google Scholar 

  7. Aoki, K., Nishikori, A., Yokoyama, R.T.: Constrained Load Flow Using Recursive Quadratic Programming. IEEE Trans. on Power Systems 2(1), 8–16 (1987)

    Article  Google Scholar 

  8. Abou El-Ela, A.A., Abido, M.A.: Optimal Operation Strategy for Reactive Power Control. Modelling, Simulation & Control, Part A 41(3), 19–40 (1992)

    Google Scholar 

  9. Stadlin, W., Fletcher, D.: Voltage Versus Reactive Current Model for Dispatch and Control. IEEE Trans. on Power Apparatus and Systems PAS-101(10), 3751–3758 (1982)

    Article  Google Scholar 

  10. Mota-Palomino, R., Quintana, V.H.: Sparse Reactive Power Scheduling by a Penalty-Function Linear Programming Technique. IEEE Trans. on Power Systems 1(3), 31–39 (1986)

    Article  Google Scholar 

  11. Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal Power Flow by Newton Approach. IEEE Trans. on Power Apparatus and Systems PAS-103(10), 2864–2875 (1984)

    Article  Google Scholar 

  12. Santos, A., da Costa, G.R.: “Optimal Power Flow Solution by Newton’s Method Applied to an Augmented Lagrangian Function,”. IEE Proc.-Gener. Transm. Distrib. 142(1), 33–36 (1995)

    Article  Google Scholar 

  13. Rahli, M., Pirotte, P.: Optimal Load Flow Using Sequential Unconstrained Minimization Technique (SUMT) Method under Power Transmission Losses Minimization. Electric Power Systems Research 52, 61–64 (1999)

    Article  Google Scholar 

  14. Yan, X., Quintana, V.H.: Improving an Interior Point based OPF by Dynamic Adjustments of Step Sizes and Tolerances. IEEE Trans. on Power Systems 14(2), 709–717 (1999)

    Article  Google Scholar 

  15. Momoh, J.A., Zhu, J.Z.: Improved Interior Point Method for OPF Problems. IEEE Trans. on Power Systems 14(3), 1114–1120 (1999)

    Article  Google Scholar 

  16. Momoh, J., El-Hawary, M., Adapa, R.: A Review of Selected Optimal Power Flow Literature to 1993 Parts I & II. IEEE Trans. on Power Systems 14(1), 96–111 (1999)

    Article  Google Scholar 

  17. Lai, L.L., Ma, J.T.: Improved Genetic Algorithms for Optimal Power Flow Under Both Normal and Contingent Operation States. Int. J. Electrical Power & Energy Systems 19(5), 287–292 (1997)

    Article  Google Scholar 

  18. Yuryevich, J., Wong, K.P.: Evolutionary Programming Based Optimal Power Flow Algorithm. IEEE Trans. on Power Systems 14(4), 1245–1250 (1999)

    Article  Google Scholar 

  19. Lee, K., Park, Y., Ortiz, J.: A United Approach to Optimal Real and Reactive Power Dispatch. IEEE Trans. on Power Apparatus and Systems 104(5), 1147–1153 (1985)

    Article  Google Scholar 

  20. Kessel, P., Glavitsch, H.: Estimating The Voltage Stability of a Power System. IEEE Trans. on Power Delivery 1(3), 346–354 (1986)

    Article  Google Scholar 

  21. Belhadj, C.A., Abido, M.A.: An optimized Fast Voltage Stability Indicator. In: IEEE Budapest Power Tech. 1999 Conference, Budapest, Hungary, BPT99-363-12 (August 29-September 2 1999)

    Google Scholar 

  22. Tuan, T.Q., Fandino, J., Hadjsaid, N., Sabonnadiere, J.C., Vu, H.: Emergency Load Shedding to Avoid Risks of Voltage Instability Using Indicators. IEEE Trans. on Power Systems 9(1), 341–351 (1994)

    Article  Google Scholar 

  23. Abido, M.A.: Optimal power flow using tabu search algorithm. Electric Power Components & Systems 30(5), 469–483 (2002)

    Article  Google Scholar 

  24. Abido, M.A.: Optimal power flow using particle swarm optimization. International Journal of Electrical Power and Energy Systems 24(7), 563–571 (2002)

    Article  Google Scholar 

  25. Fogel, D.B.: Evolutionary Computation Toward a New Philosophy of Machine Intelligence. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  26. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation 3(1), 1–16 (1995)

    Article  Google Scholar 

  27. Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective optimization: The Strength Pareto Approach, Swiss Federal Institute of Technology, TIK-Report, No. 43 (1998)

    Google Scholar 

  28. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich (1999)

    Google Scholar 

  29. Coello, C.A.C.: A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems 1(3), 269–308 (1999)

    Google Scholar 

  30. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Proceedings of EUROGEN 2001, Athens, Greece (September 2001)

    Google Scholar 

  31. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  32. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study. In: Parallel Problem Solving from Nature V, Amsterdam, September 1998, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  33. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithms: NSGA-II. EEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  34. Schaffer, J.D.: Multi objective optimization with vector evaluated genetic algorithms, PhD Thesis, Vanderbilt University, Nashville, USA (1984)

    Google Scholar 

  35. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  36. Vázquez, K.R., Fleming, P.J.: Multiobjective Genetic Programming for Non-Linear System Identification. Electronics Letters 34(9), 930–931 (1998)

    Article  Google Scholar 

  37. Ritzel, J., Eheart, J.W., Ranjithan, S.: Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resources Research 30(5), 1589–1603 (1994)

    Article  Google Scholar 

  38. Chipperfield, J., Dakev, N.V., Fleming, P.J., Whidborne, J.F.: Multiobjective robust control using evolutionary algorithms. In: IEEE International Conference on Industrial Technology, Shanghai, China (1996)

    Google Scholar 

  39. Duarte, N.M., Ruano, A.E., Fonseca, C.M., Fleming, P.J.: Accelerating Multi-Objective Control System Design Using a Neuro-Genetic Approach. In: Congress on Evolutionary Computation, Piscataway, New Jersey, vol. 1, pp. 392–397. IEEE Service Center, Los Alamitos (July 2000)

    Google Scholar 

  40. Chipperfield, J., Fleming, P.J.: Multiobjective Gas Turbine Engine Controller Design Using Genetic Algorithms. IEEE Transactions on Industrial Electronics 43(5) (October 1996)

    Google Scholar 

  41. Abido, M.A.: Environmental/Economic Power Dispatch Using Multiobjective Evolutionary Algorithms. IEEE Trans. on Power Systems 18(4), 1529–1537 (2003)

    Article  Google Scholar 

  42. Abido, M.A.: A New Multiobjective Evolutionary Algorithm for Environmental/Economic Power Dispatch. In: IEEE Power Engineering Society Summer Meeting, Vancouver, Canada, July 15-19, pp. 1263–1268 (2001)

    Google Scholar 

  43. Abido, M.A.: A Niched Pareto Genetic Algorithm for Multiobjective Environmental/Economic Dispatch. International Journal of Electrical Power and Energy Systems 25(2), 79–105 (2003)

    Article  Google Scholar 

  44. Abido, M.A.: A Novel Multiobjective Evolutionary Algorithm for Environmental/Economic Power Dispatch. Electric Power Systems Research 65(1), 71–81 (2003)

    Article  Google Scholar 

  45. Abido, M.A.: Multiobjective Environmental/Economic Power Dispatch Using Evolutionary Algorithms: A Comparative Study. In: IEEE Power Engineering Society Summer Meeting 2003, Toronto, Canada, July 13-18 (2003)

    Google Scholar 

  46. Abido, M.A.: Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem. IEEE Trans. on Evolutionary Computations 10(3), 315–329 (2006)

    Article  Google Scholar 

  47. Abido, M.A., Bakhashwain, J.M.: Optimal VAR Dispatch Using a Multiobjective Evolutionary Algorithm. International Journal of Electrical Power & Energy Systems 27(1), 13–20 (2005)

    Article  Google Scholar 

  48. Abido, M.A., Bakhashwain, J.M.: A novel Multiobjective Evolutionary Algorithm for Optimal reactive power Dispatch problem. In: 10th IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2003, Sharjah, United Arab Emirates, December 14-17, pp. 1054–1057 (2003)

    Google Scholar 

  49. Abido, M.A.: Multiobjective Optimal VAR Dispatch Using Strength Pareto Evolutionary Algorithm. In: Proceedings of The IEEE World Congress on Computational Intelligence 2006, Vancouver, Canada, July 16-21, pp. 730–736 (2006)

    Google Scholar 

  50. Abido, M.A.: Multiobjective Optimal power flow using strength Pareto Evolutionary Algorithm. In: Proceedings of the 39th International Universities Power Engineering Conference, UPEC 2004, Bristol, UK, September 6-8, vol. 8, pp. 457–461 (2004)

    Google Scholar 

  51. Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. In: Proceedings of the 1997 IEEE international Conference on Evolutionary Computation ICEC 1997, Indianapolis, Indiana, USA, pp. 303–308 (1997)

    Google Scholar 

  52. Angeline, P.: Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 601–610 (March 1998)

    Google Scholar 

  53. Shi, Y., Eberhart, R.: Parameter Selection in Particle Swarm Optimization. In: Proceedings of the 7th Annual Conference on Evolutionary Programming, pp. 591–600 (March 1998)

    Google Scholar 

  54. Ozcan, E., Mohan, C.: Analysis of a Simple Particle Swarm Optimization System. Intelligent Engineering Systems Through Artificial Neural Networks 8, 253–258 (1998)

    Google Scholar 

  55. Abido, M.A.: Optimal Design of Power System Stabilizers Using Particle Swarm Optimization. IEEE Trans. on Energy Conversion 17(3), 406–413 (2002)

    Article  Google Scholar 

  56. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Method in Multiobjective Problems. In: Proceedings of the ACM 2002 Symposium on Applied Computing SAC 2002, pp. 603–607 (2002)

    Google Scholar 

  57. Hu, X., Eberhart, R.: Multiobjective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In: Congress on Evolutionary Computation CEC 2002, vol. 2, pp. 1677–1681. IEEE Service Center, Piscataway (May 2002)

    Google Scholar 

  58. Coello, C.A.C., Lechuga, M.S.: MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization. In: Congress on Evolutionary Computation (CEC 2002), vol. 2, pp. 1051–1056. IEEE Service Center, Piscataway (May 2002)

    Google Scholar 

  59. Fieldsend, J.E., Singh, S.: A Multi-Objective Algorithm based upon Particle Swarm Optimization, an Efficient Data Structure and Turbulence. In: Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK, September 2-4, pp. 37–44 (2002)

    Google Scholar 

  60. Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multiobjective Particle Swarm Optimization (MOPSO). In: Indianapolis, I.N. (ed.) Proceedings of 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, pp. 26–33 (April 2003)

    Google Scholar 

  61. Hu, X., Eberhart, R., Shi, Y.: Particle Swarm with Extended Memory for Multiobjective Optimization. In: Proceedings of 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, April 2003, pp. 193–197 (2003)

    Google Scholar 

  62. Li, X., et al.: A Nondominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  63. Mostaghim, S., Teich, J.: The Role of ε-Dominance in Multiobjective Particle Swarm Optimization Methods. In: Proceedings of IEEE Congress on Evolutionary Computation CEC 2003, Canberra, Australia, pp. 1764–1771 (2003)

    Google Scholar 

  64. Lu, H.: Dynamic Population Strategy Assisted Particle Swarm Optimization in Multiobjective Evolutionary Algorithm design. IEEE Neural Network Society, IEEE NNS Student Research Grants 2002, Final reports (2003)

    Google Scholar 

  65. Song, M.P., Gu, G.C.: Research on Particle Swarm Optimization: A Review. In: Proceedings of the 3rd International Conference on Machine Learning and Cybernetics, Shanghai, Chaina, August 26-29, pp. 2236–2241 (2004)

    Google Scholar 

  66. Pulido, G.T., Coello Coello, C.A.: Using Clustering Techniques to Improve the Performance of a Multi-Objective Particle Swarm Optimizer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 225–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  67. Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N.: Multiobjective Optimization Using Parallel Vector Evaluated Particle Swarm Optimization. In: Proc. IASTED Int. Conf. on Artificial Intelligence and Applications, as part of the 22nd IASTED Int. Multi-Conference on Applied Informatics, Innsbruck, Austria (2004)

    Google Scholar 

  68. Mostaghim, S., Teich, J.: Covering Pareto-Optimal Fronts by Subswarms in Multiobjective Particle Swarm Optimization. In: Proceedings of IEEE Congress on Evolutionary Computation CEC 2004, Portland, Oregon, USA, June 19-23, pp. 1404–1411 (2004)

    Google Scholar 

  69. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling Multiple Objectives with Particle Swarm Optimization. IEEE Trans. on Evolutionary Computation 8(3), 256–279 (2004)

    Article  Google Scholar 

  70. Zhang, Y., Huang, S.: A Novel Multiobjective Particle Swarm Optimization for Buoys-Arrangement Design. In: Proceedings of IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2004), Beijing, China, September 20-24, pp. 24–30 (2004)

    Google Scholar 

  71. Belhadj, C.A., Abido, M.A.: An optimized Fast Voltage Stability Indicator. In: IEEE Budapest Power Tech. 1999 Conference, Budapest, Hungary, August 29-September 2, BPT99-363-12 (1999)

    Google Scholar 

  72. Tuan, T.Q., Fandino, J., Hadjsaid, N., Sabonnadiere, J.C., Vu, H.: Emergency Load Shedding to Avoid Risks of Voltage Instability Using Indicators. IEEE Trans. on Power Systems 9(1), 341–351 (1994)

    Article  Google Scholar 

  73. Goldberg, D.E., Deb, K.: A Comparison of Selection Schemes Used in Genetic Algorithms. Foundations of Genetic Algorithms, 69–93 (1991)

    Google Scholar 

  74. Goldberg, D.E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal Function Optimization. In: Proceedings of the First International Conference on Genetic Algorithms and Their Applications, pp. 41–49 (1987)

    Google Scholar 

  75. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation 3(1), 1–16 (1995)

    Article  Google Scholar 

  76. Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms-Part I: A Unified Formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  77. Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms-Part II: Application Example. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 38–47 (1998)

    Article  Google Scholar 

  78. Srinivas, N., Deb, K.: Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994)

    Article  Google Scholar 

  79. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol. 1, pp. 67–72 (1994)

    Google Scholar 

  80. Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective optimization: The Strength Pareto Approach. TIK-Report, No. 43 (1998)

    Google Scholar 

  81. Coello, C.A.C., Christiansen, A.D.: MOSES: A Multiobjective Optimization Tool for Engineering Design. Engineering Optimization 31(3), 337–368 (1999)

    Article  Google Scholar 

  82. Abido, M.A.: Two-Level of Nondominated Solutions Approach To Multiobjective Particle Swarm Optimization. In: Proceedings of the 2007 Genetic and Evolutionary Computation Conference, GECCO 2007, London, UK, July 7-11, pp. 726–733 (2007)

    Google Scholar 

  83. Abido, M.A.: Multiobjective Particle Swarm for Environmental/Economic Dispatch Problem. In: Proceedings of the 8th International Power Engineering Conference (IPEC 2007), Singapore, December 3-6, pp. 1894–1899 (2007)

    Google Scholar 

  84. Abido, M.A.: Multiobjective Particle Swarm Optimization for Environmental/Economic Dispatch Problem, Accepted for Publication in Electric Power Systems Research (February 2009) (manuscript number: EPSR-D-08-00198)

    Google Scholar 

  85. Abido, M.A.: Multiobjective Particle Swarm Optimization With Nondominated Local and Global Sets. Accepted for Publication in Journal of Natural Computation, A Special Issue on Swarm Intelligence (March 2009)

    Google Scholar 

  86. Morse, J.N.: Reducing the size of the nondominated set: Pruning by Clustering. Computers and Operation Research 7(1-2), 55–66 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abido, M.A. (2011). Multiobjective Particle Swarm Optimization for Optimal Power Flow Problem. In: Panigrahi, B.K., Shi, Y., Lim, MH. (eds) Handbook of Swarm Intelligence. Adaptation, Learning, and Optimization, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17390-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17390-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17389-9

  • Online ISBN: 978-3-642-17390-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics