Skip to main content

Potential Use of Micro- and Nanofibrillated Cellulose Composites Exemplified by Paper

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

Naturally abundant, biodegradable, and sustainable plant and wood fibres are composed of smaller and progressively mechanically stronger entities. These smaller structural load-bearing cellulosic fibrils, termed as micro- and nanocellulosic fibrils, can be separated by defibrillating the pulp fibres with either mechanical, chemical, enzymatic, and ultrasound sonication methods or a combination of these treatments. Engineered biopolymer, like cellulosic fibrils, and inorganic mineral composite structures have the potential to create new material properties and applications. This chapter deals with the production, characterisation, and application of cellulosic fibril-precipitated calcium carbonate structures in printing and writing paper. We enunciate a novel composite paper consisting of cellulosic fibrils and precipitated calcium carbonate as the backbone structure and reinforced with a minimal fraction of long fibres. However, recent research investigations show that cellulosic fibrils and their composites find wide application across different fields of manufacturing such as polymers and plastics, medicine, construction, and automotive industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supermasscolloider® (Model MKZA 10-15J) is a trademark product of Masuko Sangyo Co. Ltd, Japan.

  2. 2.

    Kraft process (Kraft or sulphate pulping) describes a technology for conversion of wood into wood pulp consisting of almost pure cellulose fibres.

  3. 3.

    TMP – thermomechanical pulp.

  4. 4.

    Supermass colloider is described in detail in Sect. 5.2.1.

  5. 5.

    Washing is performed at 0.2% consistency and 800 rpm mixing in a dynamic drainage jar.

  6. 6.

    Commercial regenerated cellulose fibres with the brand name Tencel were used in the experiments.

  7. 7.

    Commercial C-PAM sold under the brand name of Fennopol was used in the experiment.

  8. 8.

    Product name: SEFAR NITEX 03-10/2; mesh opening: 10 μm.

Abbreviations

AmPCC:

Amorphous PCC

BW:

Bulk water

Co PCC:

Colloidal PCC

c-PCC:

Composite PCC

FBW:

Freezing-bound water

FIB-SEM:

Focussed ion beam SEM

FSP:

Fibre saturation point

MFC:

Microfibrillated cellulose

NBW:

Nonfreezing bound water

NFC:

Nanofibrillated cellulose

PCC:

Precipitated calcium carbonate

r PCC:

Rhombohedral PCC

ref-PCC:

Conventional reference PCC

Sca PCC:

Scalenohedral PCC

SEM:

Scanning electron microscope

TMP:

Thermomechanical Pulp

References

  • Alince B (1989) Optimisation of pigment performance in paper. In: Baker CF (ed) Transactions of the fundamental research symposium, vol 1. Mechanical Engineering Publications, Cambridge, pp 495–510

    Google Scholar 

  • Alince B, Lepoutre P (1985) Light scattering in filled sheets – separating the contribution of the pigment and of fibre debonding. Tappi J 68(4):122–123

    CAS  Google Scholar 

  • Alince B, Porubska J, van de Ven TGM (2002) Light scattering and microporosity in paper. J Pulp Pap Sci 28(3):93–98

    Google Scholar 

  • Allan GG, Negri AR (1992) The microporosity of pulp. Tappi J 75(3):239–244

    CAS  Google Scholar 

  • Allan GG, Carroll JP, Jimenez G, Negri AR (1998) Enhancement of the optical properties of a bagasse newsprint furnish by fibre-wall-filler. Cellulose Chem Technol 32(3–4):339–347

    CAS  Google Scholar 

  • Carmona GJ, Morales GJ, Celmente RR (2003) Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)2-H2O-CO2 system. J Cryst Growth 249(3–4):561–571

    Article  Google Scholar 

  • Carmona GJ, Morales GJ, Sainz FJ, Loste E, Celmente RR (2004) The mechanism of precipitation of chain-like calcite. J Cryst Growth 262(1–4):479–489

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain N, Kortschort M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  • Chauhan VS, Singh SP, Bajpai PK (2007) Fibre loading of hardwood pulp by in-situ precipitation of aluminium silicate. BioResources 2(4):560–571

    CAS  Google Scholar 

  • Gavelin G (1998) A method and apparatus for manufacturing filler-containing paper. Pat. EP 0270103, Mo och domsjoe ab., Sweden, 16p

    Google Scholar 

  • Gooding RW, Olson JA (2001) Fractionation in a Bauer–McNett Classifier. J Pulp Pap Sci 27(12):423–428

    CAS  Google Scholar 

  • Green HV, Fox TJ, Scallan AM (1982) Lumen-loaded paper pulp. Pulp Pap Can 83(7):T203–T207

    Google Scholar 

  • Häggblom-Ahnger U (1998) Three ply office paper. Doctoral thesis, Ã…bo akademi University, ISBN 952-12-0288-2, Turku

    Google Scholar 

  • Hak-Lae L, Hye-Jung Y, Kyong-Ho L (2006) Effect of the size distribution of preflocculated GCC on the physical properties of paper. In: Zhan Huaiyu, Chen Fangang and Fu Shiyu (eds) Proceedings of the third international conference on emerging technologies in pulping and papermaking, South China University Press, pp 472–477

    Google Scholar 

  • Hiltunen E (2003) On the beating of reinforcement pulp. Doctoral thesis, Helsinki University of Technology, Reports, Series A16, Espoo

    Google Scholar 

  • Holm M, Manner H (2001) Increasing filler content in fine paper by using preflocculation. In: Proceedings of the 28th DITP International annual symposium: Technical, technological and biological processes for the improvement of production, productivity, quality and ecology in papermaking, Bled, Slovenia, pp 167–170

    Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Google Scholar 

  • Kang T, Paulapuro H (2006) New mechanical treatment of chemical pulp. J Process Mech Eng 220(3):161–166

    Article  Google Scholar 

  • Kärenlampi P (1996) Strength and toughness of paper: the effect of pulp fibre properties. Doctoral thesis, Helsinki University of Technology, Reports, Series A 4, Espoo

    Google Scholar 

  • Kettunen H, Nikanen KJ (2000) On the in-plane tear test. Tappi J 83(4):1–6

    Google Scholar 

  • Klungness JH, Caufield D, Sachs I, Tan F, Skyes M (1994) Fiber loading: a progress report. In: Proceedings of Recycling symposium, Boston, pp 283–290

    Google Scholar 

  • Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

  • Lin L, Yin X, Retulainen E, Nazhad MM (2007) Effect of chemical pulp fines on filler retention and paper properties. Appita J 60(6):469–473

    CAS  Google Scholar 

  • Lindström T, Floren T (1982) The effects of cationic starch wet end addition on the properties of clay filled papers. Svensk Papperstidning 87(12):R99–R104

    Google Scholar 

  • Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Mabee S, Harvey R (2000) Filler flocculation technology – increasing sheet filler content without loss in strength or runnability parameters. In: Proceedings of the 2000 Tappi papermakers conference, Atlanta, pp 797–809

    Google Scholar 

  • Maloney TC, Paulapuro H (2001) Thermoporsimetry of pulp fibres. The science of papermaking. In: Transactions of the 2001 Fundamental Research Symposium, BPBMA, Oxford, pp 897–926

    Google Scholar 

  • Matsuda Y, Hirose M, Ueno K (2001) Super microfibrillated cellulose, process for producing the same and coated paper and tinted paper using the same. U.S. Pat. 6,214,163 B1, Tokushu Paper Mfg. Co. Ltd, 18 pp

    Google Scholar 

  • Meuronen J (1997) The precipitation of calcium carbonate to the fines fraction of chemical pulp and properties as a filler in papermaking. Master of Science thesis, Lappeenranta University of Technology, Finland

    Google Scholar 

  • Middleton SR, Desmeules J, Scallan AM (2003) Lumen loading with calcium carbonate fillers. J Pulp Paper Sci 29(7):241–246

    CAS  Google Scholar 

  • Nakagaito AN, Yano H (2006) Nanocomposites based on cellulose microfibril. Cellulose nanocomposites: processing, characterisation and properties. ACS Symp Ser 938:151–168

    Article  CAS  Google Scholar 

  • Oksman K, Sain M (2006) Introduction to cellulose nanocomposites. Cellulose nanocomposites: processing, characterisation and properties. ACS Symp Ser 938:2–8

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg J, Ruokalainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Petlicki J, van de Ven TGM (1994) Kinetics of lumen loading. J Pulp Pap Sci 20(12):J375–J382

    Google Scholar 

  • Przybysz K, Czechowski J (1985) The effect of pulp fines on the drying process and paper strength properties. Cellulose Chem Technol 19(2):197–209

    CAS  Google Scholar 

  • Retulainen E (1997) The role of fibre bonding in paper properties. Doctoral thesis, Helsinki University of Technology, Series A7, Espoo

    Google Scholar 

  • Retulainen E, Moss P, Nieminen K (1993) Effect of fines on the properties of fibre networks. In: Transactions of the 1993 fundamental research symposium. PIRA International, Oxford, pp 727–769

    Google Scholar 

  • Retulainen E, Luukko K, Fagerholm K, Pere J, Laine J, Paulapuro H (2002) Papermaking quality of fines from different pulps – the effect of size, shape and chemical composition. Appita J 50(6):457–460

    Google Scholar 

  • Rioux P, Ricard S, Marchessault RH (1992) The preparation of magnetic papermaking fibres. J Pulp Pap Sci 18(1):J39–J43

    Google Scholar 

  • Seth RS, Page DH (1992) Fibre properties and tearing resistance. Tappi J 75(1):172–174

    Google Scholar 

  • Silenius P (2002) Improving the combinations of critical properties and process parameters of printing and writing paper and paperboards by new paper-filling methods. Doctoral thesis, Helsinki University of Technology, Report Series A14, Espoo

    Google Scholar 

  • Siven SK, Manner H (2003) Fibre loading using an aluminium compound. Appita J 56(6):438–441

    CAS  Google Scholar 

  • Subramanian R, Kononov A, Kang T, Paltakari J, Paulapuro H (2008) Structure and properties of some natural cellulosic fibrils. BioResources 3(1):192–203

    Google Scholar 

  • Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesised by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261

    Article  CAS  Google Scholar 

  • Vainio A (2007) Interfibre bonding and fibre segment activation in paper – observations on the phenomena and their influence on paper properties. Doctoral thesis, Helsinki University of Technology, Series A29, Espoo

    Google Scholar 

  • Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11–12):2521–2527 [No. 178]

    Google Scholar 

  • Xu Y, Pelton R (2005) A new look at how fines influence the strength of filled papers. J Pulp Pap Sci 31(3):147–152

    CAS  Google Scholar 

  • Yamada H, Hara N (1987) Synthesis of calcium carbonate by electrical conductivity monitoring. In: Proceedings of the first international conference on ceramic powder processing science, Florida, The American Ceramic Society, Ohio, pp 39–46

    Google Scholar 

  • Zakaria S, Ong BH, van de Ven TGM (2004a) Lumen loading magnetic paper I: flocculation. Colloids Surf A Physicochem Eng Asp 251(1–3):1–4

    Article  CAS  Google Scholar 

  • Zakaria S, Ong BH, van de Ven TGM (2004b) Lumen loading magnetic paper II: mechanism and kinetics. Colloids Surf A Physicochem Eng Asp 251(1–3):31–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramjee Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Subramanian, R., Hiltunen, E., Gane, P.A.C. (2011). Potential Use of Micro- and Nanofibrillated Cellulose Composites Exemplified by Paper. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_5

Download citation

Publish with us

Policies and ethics