Natural Fibre-Reinforced Polymer Composites and Nanocomposites for Automotive Applications

  • James NjugunaEmail author
  • Paul Wambua
  • Krzysztof Pielichowski
  • Kambiz Kayvantash


Natural fibre-reinforced composites have recently received much attention because of their attractive properties such as lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable. This chapter examines the applications of natural fibre-reinforced composites and nanocomposites in automotive structural applications. Various applied and promising natural fibre-reinforced composites and nanocomposites including flax, hemp, kenaf, wood, pineapple, banana and sisal are presented. Key determinants to performance-specific properties of natural fibre-reinforced composites are discussed in detail. These include fibre–matrix adhesion, fibre mechanical properties, moisture, impact and fatigue, thermal stability and preparation of fibre-reinforced composites. The chapter further looks into lightweight component manufacturing techniques including their potentials and limitations. Examples of current applications are given, and future trends are outlined while addressing the main drawbacks faced by these composites to lightweight components or vehicle manufacturing.


Automotive applications Autoparts manufacturing Mechanical properties Nanocomposites Natural fibres 


  1. 1.
    Mouti Z, Westwood K, Kayvantash K et al (2010) Low velocity impact behavior of glass filled fiber-reinforced thermoplastic engine components. Materials 3:2463–2473CrossRefGoogle Scholar
  2. 2.
    Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  3. 3.
    Wambua PM (2004) Protective low price composite materials based on natural fibres. PhD thesis, Katholieke Universiteit Leuven, BelgiumGoogle Scholar
  4. 4.
    Lee SC, Mariatti M (2008) The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Mater Lett 62:2253–2256CrossRefGoogle Scholar
  5. 5.
    Jústiz-Smith NG, Virgo GJ, Buchanan VE (2008) Potential of jamaican banana, coconut coir and bagasse fibres as composite materials. Mater Charact 59:1273–1278CrossRefGoogle Scholar
  6. 6.
    Reed AR, Williams PT (2003) Thermal processing of biomass natural fibre wastes by pyrolysis. Int J Energy Res 28:131–145CrossRefGoogle Scholar
  7. 7.
    Cahn RW (1990) Encyclopedia of materials science and engineering supplementary. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Hamad W (2002) Cellulosic materials: fibers, networks, and composites. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  9. 9.
    Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRefGoogle Scholar
  10. 10.
    Bhat GS (1995) Nonwovens as three-dimensional textiles for composites. Mater Manuf Process 10:667–688CrossRefGoogle Scholar
  11. 11.
    John MJ, Anandjiwala RD (2009) Chemical modification of flax reinforced polypropylene composites. Compos A 40:442–448CrossRefGoogle Scholar
  12. 12.
    Beckermann GW, Pickering KL (2009) Engineering and evaluation of hemp fibre reinforced polypropylene composites: micro-mechanics and strength prediction modelling. Compos A 40:210–217CrossRefGoogle Scholar
  13. 13.
    Mohanty AK, Wibowo A, Misra M et al (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos A 35:363–370CrossRefGoogle Scholar
  14. 14.
    Van Voorn B, Smit HHG, Sinke RJ et al (2001) Natural fibre reinforced sheet moulding compound. Compos A 32:1271–1279CrossRefGoogle Scholar
  15. 15.
    Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod 8:105–112CrossRefGoogle Scholar
  16. 16.
    Mehta G, Drzal LT, Mohanty AK et al (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci 99:1055–1068CrossRefGoogle Scholar
  17. 17.
    Mitchell AJ (1986) Composites of commercial wood pulp fibres and cement. Appita J 30:229Google Scholar
  18. 18.
    Nishino T, Hirao K, Kotera M et al (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286CrossRefGoogle Scholar
  19. 19.
    Zampaloni M, Pourboghrat F, Yankovich SA et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos A 38:1569–1580CrossRefGoogle Scholar
  20. 20.
    Shebani AN, van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471:43–50CrossRefGoogle Scholar
  21. 21.
    Maldas D, Kokta BV, Daneault C (1989) Thermoplastic composites of polystyrene: effect of different wood species on mechanical properties. J Appl Polym Sci 38:413–439CrossRefGoogle Scholar
  22. 22.
    Lu JZ, Wu Q, Negulescu II (2005) Wood-fiber/high-density-polyethylene composites: coupling agent performance. J Appl Polym Sci 96:93–102CrossRefGoogle Scholar
  23. 23.
    Michell AJ (1986) Composites containing wood pulp fibres. Appita 39:223–229Google Scholar
  24. 24.
    Beg MDH, Pickering KL (2008) Mechanical performance of kraft fibre reinforced polypropylene composites: influence of fibre length, fibre beating and hygrothermal ageing. Compos A 39:1748–1755CrossRefGoogle Scholar
  25. 25.
    McKenzie AW, Yuritta JP (1979) Wood fiber reinforced polymers. Appita 32:460–465Google Scholar
  26. 26.
    Bhattacharyya D, Bowis M, Jayaraman K (2003) Thermoforming woodfibre-polypropylene composite sheets. Compos Sci Technol 63:353–365CrossRefGoogle Scholar
  27. 27.
    George J, Sreekala MS, Thomas S et al (1998) Stress relaxation behavior of short pineapple fiber reinforced polyethylene composites. J Reinforc Plast Compos 17:651–672Google Scholar
  28. 28.
    George J, Bhagawan SS, Prabhakaran N et al (1995) Short pineapple-leaf-fiber-reinforced low-density polyethylene composites. J Appl Polym Sci 57:843–854CrossRefGoogle Scholar
  29. 29.
    Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly ‘green’ composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym Compos 20:367–378CrossRefGoogle Scholar
  30. 30.
    Arib RMN, Sapuan SM, Ahmad MMHM et al (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater Des 27:391–396CrossRefGoogle Scholar
  31. 31.
    Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63:1231–1240CrossRefGoogle Scholar
  32. 32.
    Elanthikkal S, Gopalakrishnapanicker U, Varghese S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859CrossRefGoogle Scholar
  33. 33.
    Sreekumar PA, Albert F, Unnikrishnan G et al (2008) Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM. J Appl Polym Sci 109:1547–1555CrossRefGoogle Scholar
  34. 34.
    Liu H, Wu Q, Zhang Q (2009) Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresour Technol 100:6088–6097CrossRefGoogle Scholar
  35. 35.
    Agarwal R, Saxena NS, Sharma KB et al (2003) Thermal conduction and diffusion through glass-banana fiber polyester composites. Indian J Pure Appl Phys 41:448–452Google Scholar
  36. 36.
    Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos A 39:1582–1588CrossRefGoogle Scholar
  37. 37.
    Li Y, Mai Y, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055CrossRefGoogle Scholar
  38. 38.
    Gordon JE, Jeronimidis G (1980) Composites with high work of fracture. Philos Trans R Soc Lond A Math Phys Sci 294:545–550CrossRefGoogle Scholar
  39. 39.
    Joseph K, Thomas S, Pavithran C (1995) Effect of ageing on the physical and mechanical properties of sisal-fiber-reinforced polyethylene composites. Compos Sci Technol 53:99–110CrossRefGoogle Scholar
  40. 40.
    Gauthier R, Joly C, Coupas AC et al (1998) Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos 19:287–300CrossRefGoogle Scholar
  41. 41.
    George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485CrossRefGoogle Scholar
  42. 42.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  43. 43.
    Abdelmouleh M, Boufi S, Belgacem MN et al (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54CrossRefGoogle Scholar
  44. 44.
    Mishra S, Naik JB, Patil YP (2000) The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol 60:1729–1735CrossRefGoogle Scholar
  45. 45.
    Dash BN, Rana AK, Mishra HK et al (1999) Novel, low-cost jute-polyester composites. part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20:62–71CrossRefGoogle Scholar
  46. 46.
    Hwang SJ, Gibson RF (1992) Use of strain energy-based finite element techniques in the analysis of various aspects of damping of composite materials and structures. J Compos Mater 26:2585–2605CrossRefGoogle Scholar
  47. 47.
    Gassan J (2002) A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos A 33:369–374CrossRefGoogle Scholar
  48. 48.
    Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. RAPRA Technologies Limited, Shawbury, SurreyGoogle Scholar
  49. 49.
    Pandey JK, Raghunatha Reddy K, Pratheep Kumar A et al (2005) An overview on the degradability of polymer nanocomposites. Polym Degrad Stab 88:234–250CrossRefGoogle Scholar
  50. 50.
    Wielage B, Lampke T, Marx G et al (1999) Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta 337:169–177CrossRefGoogle Scholar
  51. 51.
    Idicula M, Boudenne A, Umadevi L et al (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol 66:2719–2725CrossRefGoogle Scholar
  52. 52.
    Mishra S, Mohanty AK, Drzal LT et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRefGoogle Scholar
  53. 53.
    Leszczyńska A, Njuguna J, Pielichowski K et al (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRefGoogle Scholar
  54. 54.
    Leszczyńska A, Njuguna J, Pielichowski K et al (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochim Acta 454:1–22CrossRefGoogle Scholar
  55. 55.
    Markarian J (2005) Automotive and packaging offer growth opportunities for nanocomposites. Plastics Addit Compound 7:18–21CrossRefGoogle Scholar
  56. 56.
    Auto Applications Drive Commercialization of Nanocomposites (2002) Plastics. Addit Compound 4:30–33Google Scholar
  57. 57.
    BCC Research (2006) Nanocomposites, nanoparticles, nanoclays, and nanotubes. 1 Jun 2006Google Scholar
  58. 58.
    Lux Research (2004) The Nanotech Report 2004 retrieved on February 10, 2011 from
  59. 59.
    Principia Partners (2005) Polymer Nanocomposites Create Exciting Opportunities in the Plastics Industry: Updated Study from Principia. Retrieved on February 10, 2011 from Special Chem at
  60. 60.
    Kojima Y, Usuki A, Kawasumi M et al (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRefGoogle Scholar
  61. 61.
    Kojima Y, Usuki A, Kawasumi M et al (1993) Sorption of water in nylon 6-clay hybrid. J Appl Polym Sci 49:1259–1264CrossRefGoogle Scholar
  62. 62.
    Longkullabutra H, Thamjaree W, Nhuapeng W (2010) Improvement in the tensile strength of epoxy resin and hemp/epoxy resin composites using carbon nanotubes. Adv Mater Res 93–94:497–500CrossRefGoogle Scholar
  63. 63.
    Liu Z, Erhan SZ (2008) “Green” composites and nanocomposites from soybean oil. Mater Sci Eng A 483–484:708–711Google Scholar
  64. 64.
    Faruk O, Matuana LM (2008) Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos Sci Technol 68:2073–2077CrossRefGoogle Scholar
  65. 65.
    Vilela C, Freire CSR, Marques PAAP et al (2010) Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. Carbohydr Polym 79:1150–1156CrossRefGoogle Scholar
  66. 66.
    Xie Y, Hill CAS, Xiao Z et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A 41:806–819CrossRefGoogle Scholar
  67. 67.
    Abdelmouleh M, Boufi S, Belgacem MN et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639CrossRefGoogle Scholar
  68. 68.
    Junior de Menezes A, Siqueira G, Curvelo AAS et al (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  69. 69.
    Nakagaito AN, Fujimura A, Sakai T et al (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297CrossRefGoogle Scholar
  70. 70.
    Haq M, Burgueño R, Mohanty AK et al (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68:3344–3351CrossRefGoogle Scholar
  71. 71.
    Njuguna J, Michalowski S, Pielichowski K, Kayvantash K, Walton AC (2011) Fabrication, characterisation and low-velocity impact on hybrid sandwich composites with polyurethane/layered silicate foam cores. Polym Compos 32:6–13Google Scholar
  72. 72.
    Sun L, Gibson RF, Gordaninejad F et al (2009) Energy absorption capability of nanocomposites: a review. Compos Sci Technol 69:2392–2409CrossRefGoogle Scholar
  73. 73.
    Guigo N, Vincent L, Mija A et al (2009) Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Compos Sci Technol 69:1979–1984CrossRefGoogle Scholar
  74. 74.
    Richardson MOW, Zhang ZY (2000) Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Compos A 31:1303–1310CrossRefGoogle Scholar
  75. 75.
    Sèbe G, Cetin NS, Hill CAS et al (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7:341–349CrossRefGoogle Scholar
  76. 76.
    Williams GI, Wool RP (2000) Composites from natural fibers and soy oil resins. Appl Compos Mater 7:421–432CrossRefGoogle Scholar
  77. 77.
    Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20:621–627CrossRefGoogle Scholar
  78. 78.
    Dweib MA, Hu B, O’Donnell A et al (2004) All natural composite sandwich beams for structural applications. Compos Struct 63:147–157CrossRefGoogle Scholar
  79. 79.
    John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRefGoogle Scholar
  80. 80.
    Automotive Industries (2000) “Goes Natural” for large body panel. DaimlerChrysler 9Google Scholar
  81. 81.
    Pervaiz M, Sain MM (2003) Sheet-molded polyolefin natural fiber composites for automotive applications. Macromol Mater Eng 288:553–557CrossRefGoogle Scholar
  82. 82.
    Suddell BC, Evans WJ, Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fiber composites in automotive applications: Natural fibers. Biopolymers and Biocomposites. CRC Press, p 231Google Scholar
  83. 83.
    Bledzki AK, Faruko O, Sperher VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457CrossRefGoogle Scholar
  84. 84.
    Diener J, Siehler U (1999) Ökologischer vergleich von NMT-und GMT-bauteilen. Angew Makromol Chem 272:1–1CrossRefGoogle Scholar
  85. 85.
    Corbiere-Nicollier T, Gfeller Laban B, Lundquist L et al (2001) Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour Conservat Recycl 33:267–287CrossRefGoogle Scholar
  86. 86.
    Njuguna J, Pena I, Zhu H et al (2009) Opportunities and environmental health challenges facing integration of polymer nanocomposites: technologies for automotive applications. Int J Polym Technol 1:113–122Google Scholar
  87. 87.
    PolyOne Corporation (2010) Accessed 30 Apr 2010
  88. 88.
    Leao A, Rowell R, Tavares N (1997) Applications of natural fibres in automotive industry in brazil-thermoforming process. In: 4th International Conference on Frontiers of Polymers and Advanced Materials Conference Proceedings, pp 755–760Google Scholar
  89. 89.
    Dahlke B, Larbig H, Scherzer HD et al (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plast 34:361–378Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • James Njuguna
    • 1
    Email author
  • Paul Wambua
  • Krzysztof Pielichowski
  • Kambiz Kayvantash
  1. 1.Department of Sustainable SystemsCranfield UniversityCranfieldUK

Personalised recommendations