The Structure, Morphology, and Mechanical Properties of Thermoplastic Composites with Ligncellulosic Fiber

  • Slawomir Borysiak
  • Dominik Paukszta
  • Paulina Batkowska
  • Jerzy Mańkowski


This chapter discusses the supermolecular structure and interphase phenomenon in composite-reinforced natural fibers. We analyzed the formation of the polymorphic forms in polypropylene (PP) matrix. It was found that in the composites with natural fibers, the hexagonal form arises when the fibers are in motion in relation to the polymeric matrix. of Moving temperature of the natural fibers was found to have a strong influence on the content of the hexagonal modification. If the temperature of the moving fibers is low, then the amount of β-PP significantly increases. The content of β-PP also depends on the rate of the moving of fibers; however, the chemical modification of the natural fiber’s surface reduces the content of this form. Also, the processing conditions play an important role for structural changes in PP matrix.

Further, this chapter provides a survey about the formation of a transcrystalline layer in the composite system. The occurrence of transcrystallization was found to strongly depend on the type of chemical treatment of the fiber surface. Predominant nucleation ability was found for unmodified fibers. However, chemical modification of fiber surface slightly depressed the nucleation of polypropylene matrixes.

The influence of physical and chemical treatment methods of natural fibers on mechanical properties was analyzed also. Additionally, the mechanical and other physical properties of the composite are generally dependent on the length, content, and dispersion of fibrous filler and processing parameters.


Composites Mechanical properties Natural fibers Supermolecular structure Transcrystalline layer 


  1. 1.
    Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158CrossRefGoogle Scholar
  2. 2.
    Garbarczyk J (1985) A study on the mechanism of transition β → α in isotactic polypropylene. Makromol Chem 186:2145–2151CrossRefGoogle Scholar
  3. 3.
    Borysiak S, Garbarczyk J, Paukszta D (2007) Polish Patent P-348,342Google Scholar
  4. 4.
    Varga J, Karger-Kocsis (1993) Direct evidence of row-nucleated cylindritic crystallization in glass fiber-reinforced polypropylene composites. J Polym Bull 30:105–110CrossRefGoogle Scholar
  5. 5.
    Varga J, Karger-Kocsis J (1994) The difference between transcrystallization and shear-induced cylindritic crystallization in fibre-reinforced polypropylene composites. J Mater Sci Lett 13:1069–1071Google Scholar
  6. 6.
    Hoecker F, Karger-Kocsis J (1995) On the effects of processing conditions and interphase of modification on the fiber/matrix load transfer in single fiber polypropylene composites. J Adhes 52:81–100CrossRefGoogle Scholar
  7. 7.
    Borysiak S (2000) PhD Thesis, Faculty of Chemical Technology, Poznan University of Technology, CT PUTGoogle Scholar
  8. 8.
    Garbarczyk J, Borysiak S (2004) Influence of the pulling of embedded natural fibres on the crystal structure of polypropylene matrix. Int J Polym Mater 53:725–733CrossRefGoogle Scholar
  9. 9.
    Garbarczyk J, Paukszta D, Borysiak S (2002) Polymorphism of isotactic polypropylene in presence of additives, in blends and in composites. J Macromol Sci Part B Phys B 41:1267–1278CrossRefGoogle Scholar
  10. 10.
    Paukszta D, Borysiak S (2005) Structure of isotactic polypropylene in composites with natural fibres obtained in various processing methods. Fibres & Textiles in Eastern Europe 13:107–109Google Scholar
  11. 11.
    Sanadi R, Caulfield DF (2000) Transcrystalline interphases in natural fiber – PP composites: effect of coupling agent. Compos Interface 7:31–43CrossRefGoogle Scholar
  12. 12.
    Suzhou Y, Rials TG, Wolcott MP (1999) Crystallization behavior of polypropylene and its effect on woodfiber composite properties. pp. 139–146. Proceedings of 5th International Conference on Wood-Plastic Composites,: Forest Products Society (Eds) Madison, WI, USAGoogle Scholar
  13. 13.
    Son SJ, Lee YM, Im SS (2000) Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulose. J Mater Sci 35:5767–5778CrossRefGoogle Scholar
  14. 14.
    Lenes M, Gregersen W (2006) Effect of surface chemistry and topography of sulphite fibers on transcrystallinity of polypropylene. Cellulose 13:345–355CrossRefGoogle Scholar
  15. 15.
    Sangyeob L, Shupe TF, Groom LH, Chung YH (2007) Thermomechanical pulp fiber surface modification for enhancing the interfacial adhesion with polypropylene. Wood Fiber Sci 39:424–433Google Scholar
  16. 16.
    Zafeiropoulos NE, Baillie CA, Matthews FL (2001) A study of transcrystallinity and its effect on the interface in flax fibre reinforced. Composites 32:525–543CrossRefGoogle Scholar
  17. 17.
    Arbelaiz A, Fernandez B, Ramos JA, Mondragon I (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: effect of treatments. Thermochim Acta 440:111–121CrossRefGoogle Scholar
  18. 18.
    Nekkaa S, Guessoum M, Chebira F, Haddaoui N (2008) Effect of fibre content and chemical treatment on the thermal properties of Spartium junceum fiber-reinforced polypropylene composites. Int J Polym Mater 57:771–784CrossRefGoogle Scholar
  19. 19.
    Mi Y, Chen X, Guo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J App Polym Sci 64:1267–1273CrossRefGoogle Scholar
  20. 20.
    Felix JM, Gatenholm P (1994) Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J Mater Sci 29:3043–3049CrossRefGoogle Scholar
  21. 21.
    Gray DG (2008) Transcrystallization of polypropylene at cellulose nanocrystal surfaces. Cellulose 15:297–301CrossRefGoogle Scholar
  22. 22.
    Yi C, Petermann J, Wittich H (1997) Transcrystallization in fiber-reinforced isotactic polypropylene composites in temperature gradient. J App Polym Sci 65:67–75CrossRefGoogle Scholar
  23. 23.
    Thomason JL, Rooyen AA (1992) Transcrystallized interphase in thermoplastic composites. J Mater Sci 27:889–896CrossRefGoogle Scholar
  24. 24.
    Grozdanov A, Bogoeva-Gaceva G (2003) Transcrystallization of maleated polypropylene In the presence of various carbon fibers. Polym Bull 50:397–404CrossRefGoogle Scholar
  25. 25.
    Zhang S, Minus ML, Zhu L, Wong CP, Kumar S (2008) Polymer transcrystallinity by carbon nanotubes. Polymer 49:1356–1364CrossRefGoogle Scholar
  26. 26.
    Naiki M, Fukui Y, Matsumura T, Nomura T (2001) The effect of talc on the crystallization of isotactic polypropylene. J Appl Polym Sci 79:1693–1703CrossRefGoogle Scholar
  27. 27.
    Huihui L, Liu J, Wang D, Yan S (2003) A comparison study on the homogeneity and heterogeneity fiber induced crystallization of isotactic polypropylene. Colloid Polym Sci 281:973–979CrossRefGoogle Scholar
  28. 28.
    Huihui L, Liu J, Wang D, Yan S (2003) Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers. Macromolecules 36:2802–2807CrossRefGoogle Scholar
  29. 29.
    Quillin DT, Canfiled DF, Koutsky JA (1993) Crystallinity in the polypropylene/cellulose system. I nucleation and crystalline morphology. J App Polym Sci 50:1187–1194CrossRefGoogle Scholar
  30. 30.
    Borysiak S (2007) Determination of nucleation ability of wood for non-isothermal crystallisation of polypropylene. J Therm Anal Calorim 88:455–462CrossRefGoogle Scholar
  31. 31.
    Gray D (1974) Polypropylene transcrystallization at the surface of cellulose fibre. J Polym Sci 12:509–515Google Scholar
  32. 32.
    Son SJ, Lee YM, Im SS (2002) Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulose. J Mater Sci 35:5767–5778CrossRefGoogle Scholar
  33. 33.
    Borysiak S, Doczekalska B (2009) The influence of chemical modification of wood on its nucleation ability in polypropylene composite. Polymers 54:820–827Google Scholar
  34. 34.
    Joseph PV, Joseph K, Thomas S, Pillai CKS, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites 34:253–266CrossRefGoogle Scholar
  35. 35.
    Manchado MAL, Blagiotti J, Torre L, Kenny JM (2000) Effects of reinforcing fibers on the crystallization of polypropylene. Polym Eng Sci 40:2194–2204CrossRefGoogle Scholar
  36. 36.
    Yang HS, Gardner DJ, Kim HJ (2009) Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim 98:553–558CrossRefGoogle Scholar
  37. 37.
    Qiu W, Zhang F, Endo T, Hirotsu T (2005) Isocyanate as a compatibilizing agent on the properties of highly crystalline cellulose/polypropylene composites. J Mater Sci 40:3607–3614CrossRefGoogle Scholar
  38. 38.
    Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 40:1589–1596CrossRefGoogle Scholar
  39. 39.
    Mucha M, Królikowski Z (2003) Application of DSC to study crystallization kinetics of polypropylene containing fillers. J Therm Anal Calorim 74:549–557CrossRefGoogle Scholar
  40. 40.
    Harper D, Wolcott M (2004) Interaction between coupling agent and lubricants in wood–polypropylene composites. Composites 35:385–394Google Scholar
  41. 41.
    Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Composites 38:1664–1674CrossRefGoogle Scholar
  42. 42.
    Lei Y, Wu Q, Yao F, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading. Ind Crops Prod 28:63–72CrossRefGoogle Scholar
  43. 43.
    Folster T, Michaeli W (1993) Flachs-eine nachwachsende Verstarkungsfaser fur Kunststoffe. Kunststoffe 83:687–691Google Scholar
  44. 44.
    Mieck KP, Reubmann T (1995) Flachs versus Glas. Kunststoffe 85:366–370Google Scholar
  45. 45.
    Heijenrath R, Peijs T (1996) Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Adv Compos Lett 5:81–85Google Scholar
  46. 46.
    Peijs T, Garkhail S, Heijenrath R, Van den Oever M, Bos H (1998) Thermoplastic composites based on flax fibres and polypropylene: influence of fibre length and fibre volum fraction on mechanical properties. Macromol Symp 127:193–203CrossRefGoogle Scholar
  47. 47.
    Mieck KP (1999) Natural fibre/polypropylene composites: an A–Z reference. Chapman & Hall, LondonGoogle Scholar
  48. 48.
    Bisanda ETN, Mwaikambo LY (1997) Potential of Kapok fibre as a substitute of cotton in textiles. J Agric Sci Technol 1:66–71Google Scholar
  49. 49.
    Miwa M, Nakayama A, Ohsawa T, Hasegawa A (1979) Temperature dependence of the tensile strength of glass fiber-epoxy and glass fiber-unsaturated polyester composites. J Appl Polym Sci 23:2957CrossRefGoogle Scholar
  50. 50.
    Raj RG, Kokta BV, Maldas D, Daneault C (1989) Use of wood fibers in thermoplastics VII. The effect of coupling agents in polyethylene–wood fiber composites. J Appl Polym Sci 37:1089CrossRefGoogle Scholar
  51. 51.
    Maldas D, Kokta BV, Daneault C (1989) Influence of coupling agents and treatments on the mechanical properties of cellulose fibre–polystyrene composites. J Appl Polym Sci 37:751–775CrossRefGoogle Scholar
  52. 52.
    Fu SY, Lauke B (1996) Effects of fiber length and fiber orientation distribution on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56:1179–1190CrossRefGoogle Scholar
  53. 53.
    Arbelaiz A, Fernandez B, Ramos JA, Retegi A, Llano-Ponte R, Mondragon I (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Comp Sci Technol 65:1582–1592CrossRefGoogle Scholar
  54. 54.
    Fung KL, Li RK, Tjong SC (2002) Interface modification on the properties of sisal fibre reinforced polypropylene composites. J Appl Polym Sci 85:169–176CrossRefGoogle Scholar
  55. 55.
    Tjong SC, Xu Y, Meng YZ (1999) Composites based on maleated polypropylene and methyl cellulosic fiber: mechanical and thermal properties. J Appl Polym Sci 72:1647–1653CrossRefGoogle Scholar
  56. 56.
    Li TQ, Ng CN, Li RKY (2001) Impact behavior of sawdust/recycled-PP composites. J Appl Polym Sci 81:1420–1428CrossRefGoogle Scholar
  57. 57.
    Karmaker AC, Youngquist JA (1996) Injection moulding of polypropylene reinforced with short jute fibres. J Appl Polym Sci 62:1147–1151CrossRefGoogle Scholar
  58. 58.
    Sanadi AR, Caulfield DF, Jacobsaon RE, Rowell RM (1995) Renewable agricultural fibres as reinforcing fillers in plastics: mechanical properties of kenaf fibre–polypropylene composites. Ind Eng Chem Res 34:1889–1896CrossRefGoogle Scholar
  59. 59.
    Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibres and polypropylene. J Appl Polym Sci 42:609–620CrossRefGoogle Scholar
  60. 60.
    Chuai C, Almdal K, Poulsen L, Plackett D (2001) Conifer fibres as reinforcing materials for polypropylene-based composites. J Appl Polym Sci 80:2833–2841CrossRefGoogle Scholar
  61. 61.
    Olsen DJ (1991) Effectiveness of maleated polypropylenes as coupling agents for wood flour/polypropylene composites. Proceedings of the ANTEC Conference,: Society of Plastics Engineers (Eds) Montreal, CanadaGoogle Scholar
  62. 62.
    Rana AK, Mandal A, Mitra B, Jacobson R, Rowell R, Banerjee AN (1998) Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polym Sci 69:329–338CrossRefGoogle Scholar
  63. 63.
    Joly C, Kofman M, Gauthier R (1996) Polypropylene/cellulosic fiber composites: chemical treatment of the cellulose assuming compatibilization between the two materials. J Mol Sci Pure Appl Chem 12:1981–1996CrossRefGoogle Scholar
  64. 64.
    Oksman K, Mathew AP, Langstrom R, Nystrom B, Joseph K (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69:1847–1853CrossRefGoogle Scholar
  65. 65.
    Fung KL, Xing XS, Li RKY, Tjong SC, Mai YW (2003) An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos Sci Technol 63:1255–1258CrossRefGoogle Scholar
  66. 66.
    Bengtsson M, Baillif M, Oksman K (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A 38:1922–1931CrossRefGoogle Scholar
  67. 67.
    Arbelaiz A, Cantero G, Fernandez B, Ganan P, Kenny JM, Mondragon I (2005) Flax fiber surface modifications. Effect on fibre physico mechanical and flax/polypropylene interface properties. Polym Compos 26:324–332CrossRefGoogle Scholar
  68. 68.
    Van den Oever MJA, Bos HL, Van Kemenade JM (2000) Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl Compos Mater 7:387–402CrossRefGoogle Scholar
  69. 69.
    Sanadi AR, Feng D, Caulfield DF (1997) Highly filled lignocellulosic reinforced thermoplastic: effect on interphase modification. Proceedings of the 18th RisoInternational Symposium on Materials Science: Polymeric Composites-Expanding the Limits,: SI Andersen, P Brondsted, H Lilholt, A Lystrup, JT Rheinlander, BF Sorensen H (Eds) Toftegaard, Roskilde, DenmarkGoogle Scholar
  70. 70.
    Hornsby PR, Hinrichsen E, Tarverdi K (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. J Mater Sci 32:1009–1015CrossRefGoogle Scholar
  71. 71.
    Kim SJ, Moon JB, Kim GH, Ha CS (2008) Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test 27:801–806CrossRefGoogle Scholar
  72. 72.
    Raj RG, Kokta D, Daneault C (1989) Effect of chemical treatment of fibers on the mechanical properties of polyethylene–wood fiber composites. J Adhes Sci Technol 3:55–64CrossRefGoogle Scholar
  73. 73.
    Królikowski W (1998) Tworzywa wzmocnione i włókna wzmacniające. Warsaw, PolandGoogle Scholar
  74. 74.
    Bataille P, Ricard L, Sapieha S (1989) Effects of cellulose fibers in polypropylene composites. Polym Compos 10:103–108CrossRefGoogle Scholar
  75. 75.
    Schneider MH, Brebner KI (1985) Wood–polymer combinations: the chemical modification of wood by alkoxysilane coupling agents. Wood Sci Technol 19:67–73CrossRefGoogle Scholar
  76. 76.
    Hornsby PR et al (1997) Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II analysis of composite microstructure and mechanical properties. J Mater Sci 32:1009–1015CrossRefGoogle Scholar
  77. 77.
    Liu FP, Wolcott MP, Gardner DJ, Rials GT (1994) Characterization of the interface between cellulose fibers and a thermoplastic matrix. Compos Interface 2:419–432Google Scholar
  78. 78.
    Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002) Engineering and characterization of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A 33:1083–1093CrossRefGoogle Scholar
  79. 79.
    Borysiak S (2010) Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polym Bull 64:275–290CrossRefGoogle Scholar
  80. 80.
    Borysiak S, Doczekalska B (2006) Influence of chemical modification of wood on the crystallisation of polypropylene. Holz Roh-Werkst 64:451–454CrossRefGoogle Scholar
  81. 81.
    Borysiak S, Paukszta D (2008) Mechanical properties of lignocellulosic/polypropylene composites. Mol Cryst Liq Cyst 484:379Google Scholar
  82. 82.
    Borysiak S et al (2005) Method of preparation of board composites. Poland Patent No 190,405Google Scholar
  83. 83.
    George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471CrossRefGoogle Scholar
  84. 84.
    Bledzki AK, Reihmane S, Gassan J (1998) Thermoplastics reinforced with wood fillers: a literature review. Polym Plast Technol Eng 37:451–468CrossRefGoogle Scholar
  85. 85.
    Joly C, Gauthier R, Escoubes M (1996) Partial masking of cellulosic fiber hydrophilicity for composite applications. Water sorption by chemically modified fibers. Water sorption by chemically modified fibers. J Appl Polym Sci 61:57–69CrossRefGoogle Scholar
  86. 86.
    Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149CrossRefGoogle Scholar
  87. 87.
    Zadorecki P, Flodin P (1986) Surface modification of cellulose fibers III. Durability of cellulose–polyester composites under environmental aging. J Appl Polym Sci 31:1699–1707CrossRefGoogle Scholar
  88. 88.
    Joseph PV, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640CrossRefGoogle Scholar
  89. 89.
    Kuruvilla J, Sabu C, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149CrossRefGoogle Scholar
  90. 90.
    George J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37:5421–5431CrossRefGoogle Scholar
  91. 91.
    Subramanian RV, Hoffmann R (1983) Study of the kinetic of in situ polymerization in wood by dynamic mechanical measurements. J Polym Sci Polym Chem Ed 12:105–109Google Scholar
  92. 92.
    Kalinski R, Galeski A, Kryszewski M (1981) Low-density polyethylene filled with chalk and liquid modifier. J Appl Polym Sci 26:4047CrossRefGoogle Scholar
  93. 93.
    Thomason JL (1999) Mechanical and thermal properties of long glass fiber reinforced polypropylene. In: Karger-Kocsis J (ed) Polypropylene: An A–Z reference. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  94. 94.
    Hine PJ, Davidson N, Duckett RA, Ward IM (1995) Measuring the fibre orientation and modelling the elastic properties of injection-molded long-fibre-reinforced nylon. Compos Sci Technol 53:125–131CrossRefGoogle Scholar
  95. 95.
    Pukanszky B (1999) Particulate filled polypropylene composites. In: Karger-Kocsis J (ed) Polypropylene: An A-Z reference. Chapman & Hall, LondonGoogle Scholar
  96. 96.
    Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 41:1589–1596CrossRefGoogle Scholar
  97. 97.
    Medina L, Schledjewski R, Schlarb A (2009) Process related mechanical properties of press molded natural fiber reinforced polymers. Compos Sci Technol 69:1404–1411CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Slawomir Borysiak
    • 1
  • Dominik Paukszta
  • Paulina Batkowska
  • Jerzy Mańkowski
  1. 1.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations