Skip to main content

Part of the book series: Natural Computing Series ((NCS))

Abstract

Gossip plays a very significant role in human society. Information spreads throughout the human grapevine at an amazing speed, often reaching almost everyone in a community, without any central coordinator. Moreover, rumor tends to be extremely stubborn: once spread, it is nearly impossible to erase it. In many distributed computer systems—most notably in cloud computing and peer-to-peer computing—this speed and robustness, combined with algorithmic simplicity and the lack of central management, are very attractive features. Accordingly, over the past few decades several gossip-based algorithms have been developed to solve various problems. In this chapter, we focus on two main manifestations of gossip: information spreading (also known as multicast) where a piece of news is being spread, and information aggregation (or distributed data mining), where distributed information is being summarised. For both topics, we discuss theoretical issues, mostly relying on results from epidemiology, and we also consider design issues and optimisations in distributed applications.

Anyone can start a rumor, but none can stop one.

(American proverb)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://status.aws.amazon.com/s3-20080720.html

References

  1. Amazon Web Services. http://aws.amazon.com

  2. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications, 2nd edn. Griffin, London (1975)

    MATH  Google Scholar 

  3. De Candia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In: SOSP’07: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, pp. 205–220. ACM, New York (2007). doi:10.1145/1294261.1294281

    Chapter  Google Scholar 

  4. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC’87), Vancouver, British Columbia, Canada, pp. 1–12. ACM, New York (1987). doi:10.1145/41840.41841

    Chapter  Google Scholar 

  5. Dunbar, R.: Grooming, Gossip, and the Evolution of Language. Harvard University Press, Harvard (1998)

    Google Scholar 

  6. Hand, E.: Head in the clouds. Nature 449, 963 (2007). doi:10.1038/449963a

    Article  Google Scholar 

  7. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005). doi:10.1145/1082469.1082470

    Article  Google Scholar 

  8. Jelasity, M., Canright, G., Engø-Monsen, K.: Asynchronous distributed power iteration with gossip-based normalization. In: Kermarrec, A.M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. Lecture Notes in Computer Science, vol. 4641, pp. 514–525. Springer, Berlin (2007). doi:10.1007/978-3-540-74466-5_55

    Google Scholar 

  9. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS’00), pp. 565–574. IEEE Computer Society, Washington (2000). doi:10.1109/SFCS.2000.892324

    Chapter  Google Scholar 

  10. Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In: STOC’04: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 561–568. ACM, New York (2004). doi:10.1145/1007352.1007438

    Chapter  Google Scholar 

  11. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03), pp. 482–491. IEEE Computer Society, Los Alamitos (2003). doi:10.1109/SFCS.2003.1238221

    Chapter  Google Scholar 

  12. Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location protocols. J. ACM 51(6), 943–967 (2004). doi:10.1145/1039488.1039491

    Article  MathSciNet  MATH  Google Scholar 

  13. Kermarrec, A.M., van Steen, M. (eds.): ACM SIGOPS Oper. Syst. Rev. 41 (2007). Special Issue on Gossip-Based Networking

    Google Scholar 

  14. Kimmel, A.J.: Rumors and Rumor Control: A Manager’s Guide to Understanding and Combatting Rumors. Lawrence Erlbaum Associates, Mahwah (2003)

    Google Scholar 

  15. Lohr, S.: Google and IBM join in ‘cloud computing’ research. The New York Times (2008)

    Google Scholar 

  16. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987). doi:10.1137/0147013

    Article  MathSciNet  MATH  Google Scholar 

  17. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable technology for distributed system monitoring, management, and data mining. ACM Trans. Comput. Syst. 21(2), 164–206 (2003). doi:10.1145/762483.762485

    Article  Google Scholar 

  18. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on average consensus. In: IPSN’05: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 9. IEEE Press, Piscataway (2005). doi:10.1109/IPSN.2005.1440896

    Google Scholar 

Download references

Acknowledgement

While writing this chapter, M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márk Jelasity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jelasity, M. (2011). Gossip. In: Di Marzo Serugendo, G., Gleizes, MP., Karageorgos, A. (eds) Self-organising Software. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17348-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17348-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17347-9

  • Online ISBN: 978-3-642-17348-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics