Advertisement

Decision and Coordination Strategies for RoboCup Rescue Agents

  • Maitreyi Nanjanath
  • Alexander J. Erlandson
  • Sean Andrist
  • Aravind Ragipindi
  • Abdul A. Mohammed
  • Ankur S. Sharma
  • Maria Gini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6472)

Abstract

We describe the decision processes of agents in the Robocup Rescue Agent Simulation. Agents have to rescue civilians trapped in buildings and extinguish fires in a city which has been struck by an earthquake. Lack of information and limited communications hamper the rescue process. We examine how effective our strategies and algorithms are and compare their performance against the baseline agents and agents which competed in last year’s competition.

Keywords

Sample Agent Task Allocation Police Agent Combinatorial Auction Coordination Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitano, H., Tadokoro, S.: RoboCup rescue: A grand challenge for multiagent and intelligent systems. AI Magazine 22(1), 39–52 (2001)Google Scholar
  2. 2.
    Takeshi, M.: How to develop a RoboCupRescue agent (2000)Google Scholar
  3. 3.
    Paquet, S., Bernier, N., Chaib-draa, B.: Comparison of different coordination strategies for the RoboCup rescue simulation. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 987–996. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Mohammadi, Y.B., Tazari, A., Mehrandezh, M.: A new hybrid task sharing method for cooperative multi agent systems. In: Canadian Conf. on Electrical and Computer Engineering, pp. 2045–2048 (May 2005)Google Scholar
  5. 5.
    Martínez, I.C., Ojeda, D., Zamora, E.A.: Ambulance decision support using evolutionary reinforcement learning in RoboCup rescue simulation league. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 556–563. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Scerri, P., Farinelli, A., Okamoto, S., Tambe, M.: Allocating tasks in extreme teams. In: Proc. Int’l Conference on Autonomous Agents and Multi-Agent Systems, pp. 727–734. ACM, New York (2005)Google Scholar
  7. 7.
    Bredenfeld, A., et al.: RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 166–172. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Nair, R., Ito, T., Tambe, M., Marsella, S.: Task allocation in the RoboCup rescue simulation domain: A short note. In: Int’l Symposium on RoboCup (2001)Google Scholar
  9. 9.
    Ramchurn, S., Farinelli, A., Macarthur, K., Polukarov, M., Jennings, N.: Decentralised coordination in RoboCup rescue. The Computer Journal (January 2009)Google Scholar
  10. 10.
    Koenig, S., Tovey, C., Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P., Kleywegt, A., Meyerson, A., Jain, S.: The power of sequential single-item auctions for agent coordination. In: Proc. Nat’l Conference on Artificial Intelligence, pp. 1625–1629 (2006)Google Scholar
  11. 11.
    Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  12. 12.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. Prentice Hall of India (2001)Google Scholar
  13. 13.
    Koenig, S., Likhachev, M.: D* lite. In: Proc. Nat’l Conference on Artificial Intelligence, pp. 476–483 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maitreyi Nanjanath
    • 1
  • Alexander J. Erlandson
    • 1
  • Sean Andrist
    • 1
  • Aravind Ragipindi
    • 1
  • Abdul A. Mohammed
    • 1
  • Ankur S. Sharma
    • 1
  • Maria Gini
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaUSA

Personalised recommendations