Advertisement

Cube Based Summaries of Large Association Rule Sets

  • Marie Ndiaye
  • Cheikh T. Diop
  • Arnaud Giacometti
  • Patrick Marcel
  • Arnaud Soulet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6440)

Abstract

A major problem when dealing with association rules post-processing is the huge amount of extracted rules. Several approaches have been implemented to summarize them. However, the obtained summaries are generally difficult to analyse because they suffer from the lack of navigational tools. In this paper, we propose a novel method for summarizing large sets of association rules. Our approach enables to obtain from a rule set, several summaries called Cube Based Summaries (CBSs). We show that the CBSs can be represented as cubes and we give an overview of OLAP  navigational operations that can be used to explore them. Moreover, we define a new quality measure called homogeneity, to evaluate the interestingness of CBSs. Finally, we propose an algorithm that generates a relevant CBS w.r.t. a quality measure, to initialize the exploration. The evaluation of our algorithm on benchmarks proves the effectiveness of our approach.

Keywords

Association rules summary cubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD, pp. 207–216. ACM, New York (1993)Google Scholar
  2. 2.
    Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In: KDD 1999, pp. 125–134 (1999)Google Scholar
  3. 3.
    Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: KDD 1997, pp. 67–73 (1997)Google Scholar
  4. 4.
    Zaki, M.J.: Generating non-redundant association rules. In: KDD 2000, pp. 34–43 (2000)CrossRefGoogle Scholar
  5. 5.
    Afrati, F., Gionis, A., Mannila, H.: Approximating a collection of frequent sets. In: KDD 2004, pp. 12–19 (2004)Google Scholar
  6. 6.
    Chandola, V., Kumar, V.: Summarization — compressing data into an informative representation. In: ICDM 2005, pp. 98–105 (2005)Google Scholar
  7. 7.
    Jin, R., Abu-Ata, M., Xiang, Y., Ruan, N.: Effective and efficient itemset pattern summarization: regression-based approaches. In: KDD 2008, pp. 399–407 (2008)CrossRefGoogle Scholar
  8. 8.
    Mielikäinen, T., Mannila, H.: The pattern ordering problem. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 327–338. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ordonez, C., Ezquerra, N., Santana, C.: Constraining and summarizing association rules in medical data. Knowledge and Information Systems 9, 259–283 (2006)CrossRefGoogle Scholar
  10. 10.
    Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based approach. In: KDD 2005, pp. 314–323 (2005)Google Scholar
  11. 11.
    Blumenstock, A., Schweiggert, F., Müller, M., Lanquillon, C.: Rule cubes for causal investigations. Knowledge and Information Systems 18, 109–132 (2009)CrossRefGoogle Scholar
  12. 12.
    Boulicaut, J.F., Marcel, P., Rigotti, C.: Query driven knowledge discovery in multidimensional data. In: DOLAP 1999, pp. 87–93 (1999)Google Scholar
  13. 13.
    Liu, B., Zhao, K., Benkler, J., Xiao, W.: Rule interestingness analysis using olap operations. In: KDD 2006, pp. 297–306 (2006)Google Scholar
  14. 14.
    Hu, K., Lu, Y., Zhou, L., Shi, C.: Integrating classification and association rule mining: A concept lattice framework. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 443–447. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. SIGMOD Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  16. 16.
    Romero, O., Abelló, A.: On the need of a reference algebra for olap. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 99–110. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zaki, M.J., Hsiao, C.J.: Charm: An efficient algorithm for closed itemset mining. In: SDM, pp. 457–473 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marie Ndiaye
    • 1
    • 2
  • Cheikh T. Diop
    • 2
  • Arnaud Giacometti
    • 1
  • Patrick Marcel
    • 1
  • Arnaud Soulet
    • 1
  1. 1.Laboratoire d’InformatiqueUniversité François Rabelais Tours, Antenne Universitaire de BloisBloisFrance
  2. 2.Laboratoire d’Analyse Numérique et d’InformatiqueUniversité Gaston Berger de Saint-LouisSaint-LouisSenegal

Personalised recommendations