Advertisement

Privacy-Preserving Data Mining in Presence of Covert Adversaries

  • Atsuko Miyaji
  • Mohammad Shahriar Rahman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6440)

Abstract

Disclosure of the original data sets is not acceptable due to privacy concerns in many distributed data mining settings. To address such concerns, privacy-preserving data mining has been an active research area in recent years. All the recent works on privacy-preserving data mining have considered either semi-honest or malicious adversarial models, whereby an adversary is assumed to follow or arbitrarily deviate from the protocol, respectively. While semi-honest model provides weak security requiring small amount of computation and malicious model provides strong security requiring expensive computations like Non-Interactive Zero Knowledge proofs, we envisage the need for ‘covert’ adversarial model that performs in between the semi-honest and malicious models, both in terms of security guarantee and computational cost. In this paper, for the first time in data-mining area, we build efficient and secure dot product and set-intersection protocols in covert adversarial model. We use homomorphic property of Paillier encryption scheme and two-party computation of Aumann et al. to construct our protocols. Furthermore, our protocols are secure in Universal Composability framework.

Keywords

Privacy-preserving Data Mining Covert Adversary Efficiency Multi Party Computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Goh, E.G., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bunn, P., Ostrovsky, R.: Secure Two-Party k-Means Clustering. In: ACM CCS 2007, pp. 486–497 (2007)Google Scholar
  4. 4.
    Cramer, R., Damgard, I., Nielsen, J.B.: Multi-party computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Damgard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-Key Encryption with Non-interactive Opening. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Damgard, I., Thorbek, R.: Non-interactive proofs for integer multiplication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis, M., Schroder, D.: Public-Key Encryption with Non-interactive Opening: New Constructions and Stronger Definitions. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Goyal, V., Mohassel, P., Smith, A.: Efficient Two Party and Multi Party Computation Against Covert Adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 593–599 (2005)Google Scholar
  11. 11.
    Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Kantarcioglu, M., Clifton, C.: Privately computing a distributed k-nn classifier. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 279–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Kantarcioglu, M., Kardes, O.: Privacy-preserving data mining in the malicious model. International Journal of Information and Computer Security 2(4), 353–375 (2008)CrossRefGoogle Scholar
  14. 14.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-Secure PKE from Identity-Based Techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Lin, X., Clifton, C., Zhu, M.: Privacy-preserving clustering with distributed EM mixture modeling. Knowledge and Information Systems 8(1), 68–81 (2005)CrossRefGoogle Scholar
  16. 16.
    Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vector Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Paillier, P.: Public-key cryptosystems based on composite degree residue classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai, K.: Security and Correctness Analysis on Privacy-Preserving k-Means Clustering Schemes. IEICE Trans. Fundamentals E92-A(4), 1246–1250 (2009)Google Scholar
  21. 21.
  22. 22.
    Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 639–644 (2002)Google Scholar
  23. 23.
    Yang, Z., Wright, R.N.: Privacy-preserving computation of Bayesian networks on vertically partitioned data. IEEE Transactions on Knowledge and Data Engineering 18(9), 1253–1264 (2006)CrossRefGoogle Scholar
  24. 24.
    Yao, A.: How to Generate and Exchange Secrets. FOCS 1986, 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Atsuko Miyaji
    • 1
  • Mohammad Shahriar Rahman
    • 1
  1. 1.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations