Skip to main content

A Unified Approach to the Extraction of Rules from Artificial Neural Networks and Support Vector Machines

  • Conference paper
Book cover Advanced Data Mining and Applications (ADMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6441))

Included in the following conference series:

Abstract

Support Vector Machines (SVM) are believed to be as powerful as Artificial Neural Networks (ANN) in modeling complex problems while avoiding some of the drawbacks of the latter such as local minimæ or reliance on architecture. However, a question that remains to be answered is whether SVM users may expect improvements in the interpretability of their models, namely by using rule extraction methods already available to ANN users. This study successfully applies the Orthogonal Search-based Rule Extraction algorithm (OSRE) to Support Vector Machines. The study evidences the portability of rules extracted using OSRE, showing that, in the case of SVM, extracted rules are as accurate and consistent as those from equivalent ANN models. Importantly, the study also shows that the OSRE method benefits from SVM specific characteristics, being able to extract less rules from SVM than from equivalent ANN models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher, D.H., McKusick, K.B.: An Empirical Comparison of ID3 and Back-Propagation. In: 11th International Joint Conference on Artificial Intelligence, vol. 1, pp. 788–793. Morgan Kaufmann, Michigan (1989)

    Google Scholar 

  2. Shavlik, J.W., Mooney, R.J., Towell, G.G.: Symbolic and Neural Learning Algorithms: An Experimental Comparison. Machine Learning 6, 111–143 (1991)

    MATH  Google Scholar 

  3. Weiss, S.M., Kapouleas, I.: An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods. In: 11th International Joint Conference on Artificial Intelligence, vol. 1, pp. 781–787. Morgan Kaufmann, Michigan (1989)

    Google Scholar 

  4. Etchells, T.A., Lisboa, P.J.G.: Orthogonal Search-based Rule Extraction (OSRE) for Trained Neural Networks: A Practical and Efficient Approach. IEEE Transactions on Neural Networks 17, 374–384 (2006)

    Article  Google Scholar 

  5. Andrews, R., Diederich, J., Tickle, A.B.: Survey and Critique of Techniques for Extracting Rules from Trained Artificial Neural Networks. Knowledge-Based Systems 8, 373–389 (1995)

    Article  MATH  Google Scholar 

  6. Aung, M.S., Lisboa, P.J., Etchells, T.A., Testa, A.C., Calster, B., Huffel, S., Valentin, L., Timmerman, D.: Comparing Analytical Decision Support Models Through Boolean Rule Extraction: A Case Study of Ovarian Tumour Malignancy. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 1177–1186. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Lisboa, P.J.G., Jarman, I.H., Etchells, T.A., Ramsey, P.: A Prototype Integrated Decision Support System for Breast Cancer Oncology. In: 9th International Work Conference on Artificial Neural Networks, pp. 996–1003. Springer, San Sebastián (2007)

    Google Scholar 

  8. Jarman, I.H., Etchells, T.A., Martín, J.D., Lisboa, P.J.G.: An Integrated Framework for Risk Profiling of Breast Cancer Patients Following Surgery. Artificial Intelligence in Medicine 42, 165–188 (2008)

    Article  Google Scholar 

  9. Lisboa, P.J.G., Etchells, T.A., Jarman, I.H., Aung, M.S.H., Chabaud, S., Bachelot, T., Perol, D., Gargi, T., Bourdès, V., Bonnevay, S., Négrier, S.: Time-to-event Analysis with Artificial Neural Networks: An Integrated Analytical and Rule-Based Study for Breast Cancer. Neural Networks 21, 414–426 (2008)

    Article  Google Scholar 

  10. Pop, E., Hayward, R., Diederich, J.: RULENEG: Extracting Rules from a Trained ANN by Stepwise Negation. Queensland University of Technology, Australia (1994)

    Google Scholar 

  11. Tsukimoto, H.: Extracting Rules from Trained Neural Networks. IEEE Transactions on Neural Networks 11, 377–389 (2000)

    Article  Google Scholar 

  12. Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K., Deroski, S., Fahlman, S.E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R.S., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Van de Welde, W., Wenzel, W., Wnek, J., Zhang, J.: The MONK’s Problems: A Performance Comparison of Different Learning Algorithms. Technical Report CS-91-197, Computer Science Department, Carnegie Mellon University, Pittsburgh (1991)

    Google Scholar 

  13. Wisconsin Breast Cancer, http://archive.ics.uci.edu/ml/datasets.html

  14. Iris Dataset, http://archive.ics.uci.edu/ml/datasets.html

  15. Platt, J.C.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Platt, J.C. (ed.) Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Etchells, T.A.: Rule Extraction from Neural Networks: A Practical and Efficient Approach. Ph.D Dissertation. John Moores University, Liverpool (2003)

    Google Scholar 

  17. Burges, C., Crisp, D.: Uniqueness of the SVM Solution. In: Advances in Neural Information Processing Systems, vol. 12, pp. 223–229. MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerreiro, J., Trigueiros, D. (2010). A Unified Approach to the Extraction of Rules from Artificial Neural Networks and Support Vector Machines. In: Cao, L., Zhong, J., Feng, Y. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17313-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17313-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17312-7

  • Online ISBN: 978-3-642-17313-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics