Skip to main content

Cartesian Genetic Programming

  • Chapter

Part of the Natural Computing Series book series (NCS)

Abstract

In this chapter, we describe the original and most widely known form of Cartesian genetic programming (CGP). CGP encodes computational structures, which we call ‘programs’ in the form of directed acyclic graphs. We refer to this as ‘classic’ CGP. However these program may be computer programs, circuits, rules, or other specialized computational entities.

Keywords

  • Crossover Operator
  • Digital Circuit
  • Program Input
  • Primitive Function
  • Program Output

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-17310-3_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-17310-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brameier, M., Banzhaf, W.: A Comparison of Linear Genetic Programming and Neural Networks in Medical Data Mining. IEEE Transactions on Evolutionary Computation 5(1), 17–26 (2001)

    CrossRef  Google Scholar 

  2. Clegg, J., Walker, J.A., Miller, J.F.: A New Crossover Technique for Cartesian Genetic Programming. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1580–1587. ACM Press (2007)

    Google Scholar 

  3. Khan, M.M., Khan, G.M., Miller, J.F.: Efficient representation of Recurrent Neural Networks for Markovian/Non-Markovian Non-linear Control Problems. In: A.E. Hassanien, A. Abraham, F. Marcelloni, H. Hagras, M. Antonelli, T.P. Hong (eds.) Proc. International Conference on Intelligent Systems Design and Applications, pp. 615–620. IEEE (2010)

    CrossRef  Google Scholar 

  4. Liu, Y., Tempesti, G., Walker, J.A., Timmis, J., Tyrrell, A.M., Bremner, P.: A Self-Scaling Instruction Generator Using Cartesian Genetic Programming. In: Proc. European Conference on Genetic Programming, LNCS, vol. 6621, pp. 299–310. Springer (2011)

    Google Scholar 

  5. Miller, J.F.: An Empirical Study of the Efficiency of Learning Boolean Functions using a Cartesian Genetic Programming Approach. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1135–1142. Morgan Kaufmann (1999)

    Google Scholar 

  6. Miller, J.F., Smith, S.L.: Redundancy and Computational Efficiency in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)

    CrossRef  Google Scholar 

  7. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proc. European Conference on Genetic Programming, LNCS, vol. 1802, pp. 121–132. Springer (2000)

    Google Scholar 

  8. Miller, J.F., Thomson, P., Fogarty, T.C.: Designing Electronic Circuits Using Evolutionary Algorithms: Arithmetic Circuits: A Case Study. In: D. Quagliarella, J. Periaux, C. Poloni, G. Winter (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: Recent Advancements and Industrial Applications, pp. 105–131. Wiley (1998)

    Google Scholar 

  9. Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Ph.D. thesis, Technical University of Berlin, Germany (1971)

    Google Scholar 

  10. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital Circuit Evolution. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 1801, pp. 252–263. Springer (2000)

    Google Scholar 

  11. Walker, J.A., Liu, Y., Tempesti, G., Tyrrell, A.M.: Automatic Code Generation on a MOVE Processor Using Cartesian Genetic Programming. In: Proc. International Conference on Evolvable Systems: From Biology to Hardware, LNCS, vol. 6274, pp. 238–249. Springer (2010)

    CrossRef  Google Scholar 

  12. Walker, J.A., Miller, J.F.: Automatic Acquisition, Evolution and Re-use of Modules in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation 12, 397–417 (2008)

    CrossRef  Google Scholar 

  13. Yu, T., Miller, J.F.: Neutrality and the evolvability of Boolean function landscape. In: Proc. European Conference on Genetic Programming, LNCS, vol. 2038, pp. 204–217. Springer (2001)

    Google Scholar 

  14. Yu, T., Miller, J.F.: Finding Needles in Haystacks is not Hard with Neutrality. In: Proc. European Conference on Genetic Programming, LNCS, vol. 2278, pp. 13–25. Springer (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, J.F. (2011). Cartesian Genetic Programming. In: Miller, J. (eds) Cartesian Genetic Programming. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17310-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17310-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17309-7

  • Online ISBN: 978-3-642-17310-3

  • eBook Packages: Computer ScienceComputer Science (R0)