Skip to main content

Drehrohröfen

  • Chapter
Dubbel
  • 3849 Accesses

Zusammenfassung

Drehrohröfen werden zur thermischen Behandlung von granular und stückig anfallenden Materialien eingesetzt. Der Größenbereich der Materialien reicht von einigen µm bis hin zu einem Meter wie beispielsweise bei Abfällen. Zum Transport der Materialien werden diese einem leicht geneigten, sich drehendem Rohr zugeführt, worauf der Name gründet. Die Bewegung des Materials ist in Bild 1 veranschaulicht. In Längsrichtung fällt die Betthöhe des Materials kontinuierlich wie bei einer fließenden Flüssigkeit ab. Durch die Abnahme der potentiellen Energie wird die Reibung überwunden. Die Drehung fördert das Fließen des Materials. An der Wand wird das Material angehoben, wobei es relativ zur Wandbewegung in Ruhe bleibt. Auf einer schmalen Schicht rutscht das Material dann wieder abwärts. Nur während dieses Abwärtsfließens wird das Material auf Grund der Neigung in Längsrichtung transportiert. Zwischen Hubregion und Gleitschicht findet ein Queraustausch des Materials statt, was die Durchmischung fördert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Spezielle Literatur

  1. Ranze, W., Malzkorn, H.: Driving Motors for Rotary Kilns. Cement Lime Gypsum 44, 110–118 (1991)

    Google Scholar 

  2. Zimmer, W.: Function Mode and use of Air Canons in the Cement-Lime and Gypsum Industry. Cement Lime Gypsum 54, 316–334 (2001)

    Google Scholar 

  3. Stark, J., Wicht, B.: To the 100rd Anniversary of the Establishment of the first Cement Rotating Furnace in Germany. Cement Lime Gypsum 50, 407–416 (1997)

    Google Scholar 

  4. Mellman, J.: The Transverse Motion of Solids in Rotating Cylinders. Powder Technology 118, 251–270 (2001)

    Article  Google Scholar 

  5. Mellmann, J., Specht, E.: Mathematical Modelling of the Transition Behaviour between the various Forms of Transverse Motion of Bulk Materials in Rotating Cylinders (Part 2). English and German. Cement Lime Gypsum Int. 54, 380–402 (2001)

    Google Scholar 

  6. Liu, X., Specht, E., Mellmann, J.: Slumping‐rolling transition of granular solids in rotary kilns. Chemical Engineering Science 60, 3629–3636 (2005)

    Article  Google Scholar 

  7. Liu, X., Specht, E., Mellmann, J.: Experimental study of the upper and lower angle of repose of granular materials in rotating drums. Powder Technology 154, 125–131 (2005)

    Article  Google Scholar 

  8. Mellmann, J., Liu, X., Specht, E.: Prediction of Rolling Bed Motion in Rotating Cylinders. AICHE Journal 50(1), 2783–2793 (2004)

    Article  Google Scholar 

  9. Liu, X., Specht, E., Guerra Gonzales, O., Walzel, P.: Analytical solution of the rolling – mode granular motion in rotary kilns. Chemical Engineering and Processing 45, 515–521 (2006)

    Article  Google Scholar 

  10. Liu, X., Mellmann, J, Specht, E.: Factors influencing the rolling bed motion and transverse particle residence time in rotary kilns. Cement Lime Gypsum Int. 58, 62–73 (2005)

    Google Scholar 

  11. Saemann, W.C.: Passage of Solids through Rotary Kilns: Factors affecting Time of Passage. Chemical Engineering Progress 47, 508–514 (1951)

    Google Scholar 

  12. Shi, Y., Woche, H., Specht, E., Knabbe, J., Sprinz, U.: Experimental Investigation of Solid Bed Depth at the Discharge End of Rotary Kilns. Powder Technology 197, 17–24 (2010)

    Article  Google Scholar 

  13. Spurling, R.J.: Granular Flow in an inclined Rotating Cylinder: Steady State and Transients. PhD thesis, Department of Chemical Engineering, University of Cambridge (2000)

    Google Scholar 

  14. Sullivan, J.D., Maier, C.G., Ralson, O.C.: Passage of Solid Particles through Rotary cylindrical kilns. U.S. Bureau of Mines Technical Paper, No. 384 (1927)

    Google Scholar 

  15. Liu, X., Specht, E.: Mean residence time and hold-up of solids in rotary kilns. Chemical Engineering Science 61, 5176–5181 (2006)

    Article  Google Scholar 

  16. Woche, H., Specht, E., Schmidt, J.: Local Heat Transfer in Tubes after Sudden Change of Diameters. Chemical Engineering and Technology 28, 677–683 (2005)

    Article  Google Scholar 

  17. Agustini, S., Queck, A., Specht, E.: Modeling of the Regenerative Heat Flow of the Wall in Direct Fired Rotary Kilns. Heat Transfer Engineering 29(1), 57–66 (2008)

    Article  Google Scholar 

  18. Lehmberg, J., Hehl, M., Schugerl, K.: Transverse mixing and heat transfer in horizontal rotary drum reactor, Powder Technology 18, 149–163 (1977)

    Article  Google Scholar 

  19. Li, S.-Q., Ma, L.-B, Wan, W., Yan, Q.: A mathematical model of heat transfer in a rotary kiln thermo-reactor. Chemical Engineering Technology 28(12), 1480–1489 (2005)

    Article  Google Scholar 

  20. Tscheng, S.H., Watkinson, A.P.: Convective heat transfer in a rotary kiln. The Canadian Journal of Chemical Engineering 57, 433–443 (1979)

    Article  Google Scholar 

  21. Wachters, L.H.J., Kramers, H.: 3rd European Symposium of Chemical Reaction Engineering, Amsterdam (1964)

    Google Scholar 

  22. Wes, G.W.J., Drinkenburg, A.A.H., Stemerding, S.: Heat transfer in a horizontal rotary drum reactor. Powder Technology 13, 185–192 (1976)

    Article  Google Scholar 

  23. Cross, M., Young, R.W.: Mathematical model of rotary kilns used in the production of iron ore pellets. Ironmaking and Steelmaking 3, 129−137 (1976)

    Google Scholar 

  24. Frankenberger, R.: Beitrag zur Berechnung des Wärmeübergangs in Zementdrehrohröfen. Zement-Kalk-Gips 4, 31−35 (1971)

    Google Scholar 

  25. Klose, W., Wiest, W.: Experiments and mathematical modeling of maize pyrolysis in a rotary kiln. FUEL 78, 65−72 (1999)

    Google Scholar 

  26. Manitius, A., Kurcyusz, E., Kawecki, W.: Mathematical Model of the Aluminium Oxide Rotary Kiln. Industrial Engineering and Chemical 2, 132-142 (1974)

    Google Scholar 

  27. Rensch, T.: Beitrag zum Prozess der thermischen Bodendekontamination im Drehrohrofen. Dissertation, Universität Magdeburg (2001)

    Google Scholar 

  28. Rovaglio, M. et al.: Dynamic modeling of waste incineration plants with rotary kilns: Comparison between experimental and simulation data. Chemical Engineering Science 53(15), 2727–2742 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, F., Gelbe†, H., Mörl, L., Specht, E. (2011). Drehrohröfen. In: Grote, KH., Feldhusen, J. (eds) Dubbel. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17306-6_164

Download citation

Publish with us

Policies and ethics