Abstract
Controlling dominance area of solutions (CDAS) relaxes the concepts of Pareto dominance with an user-defined parameter S. This method enhances the search performance of dominance-based MOEA in many-objective optimization problems (MaOPs). However, to bring out desirable search performance, we have to experimentally find out S that controls dominance area appropriately. Also, there is a tendency to deteriorate the diversity of solutions obtained by CDAS when we decrease S from 0.5. To solve these problems, in this work, we propose a modification of CDAS called self-controlling dominance area of solutions (S-CDAS). In S-CDAS, the algorithm self-controls dominance area for each solution without the need of an external parameter. S-CDAS considers convergence and diversity and realizes a fine grained ranking that is different from conventional CDAS. In this work, we use many-objective 0/1 knapsack problems with m = 4~10 objectives to verify the search performance of the proposed method. Simulation results show that S-CDAS achieves well-balanced search performance on both convergence and diversity compared to conventional NSGA-II, CDAS, IBEA ε + and MSOPS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, No.103 (2001)
Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One Many? In: Proc. IEEE Congress on Evolutionary Computation (CEC 2005), pp. 222–227 (September 2005)
Aguirre, H., Tanaka, K.: Working Principles, Behavior, and Performance of MOEAs on MNK-Landscapes. European Journal of Operational Research 181(3), 1670–1690 (2007)
Zitzler, E., Kunzili, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Sato, H., Aguirre, H., Tanaka, K.: Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007)
Sato, H., Aguirre, H., Tanaka, K.: Effect of Controlling Dominance Area of Solutions in MOEAs on Convex Problems with Many Objectives. In: Proc. 7th Intl. Conf. on Optimization: Techniques and Applications (ICOTA7), in CD-ROM (2007)
Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)
Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)
Fonseca, C., Paquete, L., López-Ibáñez, M.: An Improved Dimension-sweep Algorithm for the Hypervolume Indicator. In: Proc. 2006 IEEE Congress on Evolutionary Computation, pp. 1157–1163 (2006)
Sato, M., Aguirre, H., Tanaka, K.: Effects of δ-Similar Elimination and Controlled Elitism in the NSGA-II Multiobjective Evolutionary Algorithm. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2006), pp. 3980–3398 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sato, H., Aguirre, H.E., Tanaka, K. (2010). Self-Controlling Dominance Area of Solutions in Evolutionary Many-Objective Optimization. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-17298-4_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17297-7
Online ISBN: 978-3-642-17298-4
eBook Packages: Computer ScienceComputer Science (R0)