Skip to main content

Self-Controlling Dominance Area of Solutions in Evolutionary Many-Objective Optimization

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

Abstract

Controlling dominance area of solutions (CDAS) relaxes the concepts of Pareto dominance with an user-defined parameter S. This method enhances the search performance of dominance-based MOEA in many-objective optimization problems (MaOPs). However, to bring out desirable search performance, we have to experimentally find out S that controls dominance area appropriately. Also, there is a tendency to deteriorate the diversity of solutions obtained by CDAS when we decrease S from 0.5. To solve these problems, in this work, we propose a modification of CDAS called self-controlling dominance area of solutions (S-CDAS). In S-CDAS, the algorithm self-controls dominance area for each solution without the need of an external parameter. S-CDAS considers convergence and diversity and realizes a fine grained ranking that is different from conventional CDAS. In this work, we use many-objective 0/1 knapsack problems with m = 4~10 objectives to verify the search performance of the proposed method. Simulation results show that S-CDAS achieves well-balanced search performance on both convergence and diversity compared to conventional NSGA-II, CDAS, IBEA ε +  and MSOPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  2. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001 (2000)

    Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, No.103 (2001)

    Google Scholar 

  4. Hughes, E.J.: Evolutionary Many-Objective Optimisation: Many Once or One Many? In: Proc. IEEE Congress on Evolutionary Computation (CEC 2005), pp. 222–227 (September 2005)

    Google Scholar 

  5. Aguirre, H., Tanaka, K.: Working Principles, Behavior, and Performance of MOEAs on MNK-Landscapes. European Journal of Operational Research 181(3), 1670–1690 (2007)

    Article  MATH  Google Scholar 

  6. Zitzler, E., Kunzili, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Sato, H., Aguirre, H., Tanaka, K.: Controlling Dominance Area of Solutions and Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Sato, H., Aguirre, H., Tanaka, K.: Effect of Controlling Dominance Area of Solutions in MOEAs on Convex Problems with Many Objectives. In: Proc. 7th Intl. Conf. on Optimization: Techniques and Applications (ICOTA7), in CD-ROM (2007)

    Google Scholar 

  9. Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

    Google Scholar 

  12. Fonseca, C., Paquete, L., López-Ibáñez, M.: An Improved Dimension-sweep Algorithm for the Hypervolume Indicator. In: Proc. 2006 IEEE Congress on Evolutionary Computation, pp. 1157–1163 (2006)

    Google Scholar 

  13. Sato, M., Aguirre, H., Tanaka, K.: Effects of δ-Similar Elimination and Controlled Elitism in the NSGA-II Multiobjective Evolutionary Algorithm. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2006), pp. 3980–3398 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sato, H., Aguirre, H.E., Tanaka, K. (2010). Self-Controlling Dominance Area of Solutions in Evolutionary Many-Objective Optimization. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics