Skip to main content

Multi-Objective Optimization of Particle Reinforced Silicone Rubber Mould Material for Soft Tooling Process

  • Conference paper
Simulated Evolution and Learning (SEAL 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6457))

Included in the following conference series:

  • 2705 Accesses

Abstract

Multi-objective optimizations of various conflicting objectives in designing particle reinforced silicone rubber are conducted using evolutionary algorithms to reduce the processing time of soft tooling process. A well-established evolutionary algorithm based multi-objective optimization tool, NSGA-II is adopted to find the optimal values of design parameters. From the obtained Pareto-optimal fronts, suitable multi-criterion decision making techniques are used to select one or a small set of the optimal solution(s) of design parameter(s) based on the higher level information of soft tooling process for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nandi, A.K., Datta, S.: Effective Properties of Particle Reinforced Polymeric Mould Material towards Reducing Cooling Time in Soft Tooling Process. J. of Appl. Polym. Sci. (accepted)

    Google Scholar 

  2. Nandi, A.K., Vesterinen, A., Cingi, C., Seppala, J., Orkas, J.: Studies on Equivalent Viscosity of Particle-Reinforced Flexible Mold Materials Used in Soft Tooling Process. J. of Reinforced Plast. Compos. 29(14), 2081–2098 (2010)

    Article  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Ouchiyama, N., Tanaka, T.: Porosity Estimation for Random Packings of Spherical Particles. Industrial & Engineering Chemistry Fundamentals 23, 490–493 (1984)

    Article  Google Scholar 

  5. Nandi, A.K., Datta, S., Deb, K., Orkas, J.: Studies on Effective Thermal Conductivity of Particle Reinforced Polymeric Flexible Mould Material Composites: A Genetic Fuzzy based approach. In: Proceedings of the 3rd Int. Conference on Recent Advances in Composite Materials (ICRACM 2010), France, December 13-15 (2010) (accepted)

    Google Scholar 

  6. Lielens, G., Pirotte, P., Couniot, A., Dupret, F., Keunings, R.: Prediction of thermo-mechanical properties for compression moulded composites. Composites Part A: Applied Science and Manufacturing 29(1-2), 63–70 (1998)

    Article  Google Scholar 

  7. Krieger, I.M., Dougherty, T.J.: A mechanism for non-newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology III, 137–152 (1959)

    Article  MATH  Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Pearson-Education, New Delhi (2002)

    Google Scholar 

  9. Deb, K.: Multiobjective Optimization Using Evolutionary Algorithms. John Wiley & Sons Ltd., Chichester (2001)

    Google Scholar 

  10. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Zürich, Switzerland: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) (1998)

    Google Scholar 

  11. Veldhuizen, D.V., Lamont, G.B.: Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation Journal 8(2), 125–128 (2000)

    Article  Google Scholar 

  12. Miettinen, K.: Nonlinear multiobjective optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  13. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Yu, P.L.: A class of solutions for group decision problems. Management Science 19(8), 936–946 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nandi, A.K., Datta, S. (2010). Multi-Objective Optimization of Particle Reinforced Silicone Rubber Mould Material for Soft Tooling Process. In: Deb, K., et al. Simulated Evolution and Learning. SEAL 2010. Lecture Notes in Computer Science, vol 6457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17298-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17298-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17297-7

  • Online ISBN: 978-3-642-17298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics