Skip to main content

Enhancing Iris Matching Using Levenshtein Distance with Alignment Constraints

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Included in the following conference series:

Abstract

Iris recognition from surveillance-type imagery is an active research topic in biometrics. However, iris identification in unconstrained conditions raises many proplems related to localization and alignment, and typically leads to degraded recognition rates. While development has mainly focused on more robust preprocessing, this work highlights the possibility to account for distortions at matching stage. We propose a constrained version of the Levenshtein Distance (LD) for matching of binary iris-codes as an alternative to the widely accepted Hamming Distance (HD) to account for iris texture distortions by e.g. segmentation errors or pupil dilation. Constrained LD will be shown to outperform HD-based matching on CASIA (third version) and ICE (2005 edition) datasets. By introducing LD alignment constraints, the matching problem can be solved in O(n ·s) time and O(n + s) space with n and s being the number of bits and shifts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding 110, 281–307 (2008)

    Article  Google Scholar 

  2. Matey, J.R., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D.J., Mangru, S., Tinker, M., Zappia, T.M., Zhao, W.Y.: Iris on the move: Acquisition of images for iris recognition in less constrained environments. Proceedings of the IEEE 94, 1936–1947 (2006)

    Article  Google Scholar 

  3. Wheeler, F.W., Perera, A.G., Abramovich, G., Yu, B., Tu, P.H.: Stand-off iris recognition system. In: Proceedings of the IEEE Second International Conference on Biometrics: Theory, Applications and Systems (BATS), pp. 1–7 (2008)

    Google Scholar 

  4. Proença, H., Alexandre, L.A.: Iris recognition: Analysis of the error rates regarding the accuracy of the segmentation stage. Elsevier Image and Vision Computing 28, 202–206 (2010)

    Article  Google Scholar 

  5. Matey, J.R., Broussard, R., Kennell, L.: Iris image segmentation and sub-optimal images. Image and Vision Computing 28, 215–222 (2010)

    Article  Google Scholar 

  6. Daugman, J.: How iris recognition works. IEEE Transactions on Circiuts and Systems for Video Technology 14, 21–30 (2004)

    Article  Google Scholar 

  7. Cha, S.H., Tappert, C., Yoon, S.: Enhancing binary feature vector similarity measures. Journal of Pattern Recognition Research 1, 63–77 (2006)

    Article  Google Scholar 

  8. Choi, S., Cha, S., Tappert, C.: A survey of binary similarity and distance measures. Journal of Systemics, Cybernetics and Informatics 8, 43–48 (2010)

    Google Scholar 

  9. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  10. Yuan, X., Shi, P.: A non-linear normalization model for iris recognition. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 135–142. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Wyatt, H.J.: A ’minimum-wear-and-tear’ meshwork for the iris. Vision Research 40, 2167–2176 (2000)

    Article  Google Scholar 

  12. Schimke, S., Vielhauer, C., Dittmann, J.: Using adapted levenshtein distance for on-line signature authentication. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), Washington, DC, USA, vol. 2, pp. 931–934. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  13. Myers, C.S., Rabiner, L.R.: A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical Journal 60, 1389–1409 (1981)

    Article  Google Scholar 

  14. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Transactions on Image Processing 13, 739–750 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uhl, A., Wild, P. (2010). Enhancing Iris Matching Using Levenshtein Distance with Alignment Constraints. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics