Advertisement

An Efficient Method for the Visualization of Spectral Images Based on a Perception-Oriented Spectrum Segmentation

  • Steven Le Moan
  • Alamin Mansouri
  • Yvon Voisin
  • Jon Y. Hardeberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6453)

Abstract

We propose a new method for the visualization of spectral images. It involves a perception-based spectrum segmentation using an adaptable thresholding of the stretched CIE standard observer color-matching functions. This allows for an underlying removal of irrelevant channels, and, consequently, an alleviation of the computational burden of further processings. Principal Components Analysis is then used in each of the three segments to extract the Red, Green and Blue primaries for final visualization. A comparison framework using two different datasets shows the efficiency of the proposed method.

Keywords

Independent Component Analysis Spectral Image Hyperspectral Image Independent Component Analysis Multispectral Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grassmann, H.: On the theory of compound colors. Phil. Mag. 7, 254–264 (1854)Google Scholar
  2. 2.
    Durand, J., Kerr, Y.: An improved decorrelation method for the efficient display ofmultispectral data. IEEE Trans. on Geoscience and Remote Sensing 27, 611–619 (1989)CrossRefGoogle Scholar
  3. 3.
    Tyo, J., Konsolakis, A., Diersen, D., Olsen, R.: Principal-components-based display strategy for spectral imagery. IEEE Trans. on Geoscience and Remote Sensing 41, 708–718 (2003)CrossRefGoogle Scholar
  4. 4.
    Tsagaris, V., Anastassopoulos, V.: Multispectral image fusion for improved rgb representation based on perceptual attributes. International Journal of Remote Sensing 26, 3241–3254 (2005)CrossRefGoogle Scholar
  5. 5.
    Scheunders, P.: Multispectral image fusion using local mapping techniques. In: International Conference on Pattern Recognition, vol. 15, pp. 311–314 (2000)Google Scholar
  6. 6.
    Du, Q., Raksuntorn, N., Cai, S., Moorhead, R.: Color display for hyperspectral imagery. IEEE Trans. on Geoscience and Remote Sensing 46, 1858–1866 (2008)CrossRefGoogle Scholar
  7. 7.
    Jia, X., Richards, J.: Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans. on Geoscience and Remote Sensing 37, 538–542 (1999)CrossRefGoogle Scholar
  8. 8.
    Zhu, Y., Varshney, P., Chen, H.: Evaluation of ica based fusion of hyperspectral images for color display. In: 2007 10th International Conference on Information Fusion, pp. 1–7 (2007)Google Scholar
  9. 9.
    Tsagaris, V., Anastassopoulos, V., Lampropoulos, G.: Fusion of hyperspectral data using segmented pct for color representation and classification. IEEE Trans. on Geoscience and Remote Sensing 43, 2365–2375 (2005)CrossRefGoogle Scholar
  10. 10.
    http://www.cie.co.at/main/freepubs.html (last check : September 11, 2010)
  11. 11.
    Trussell, H.: Color and multispectral image representation and display. In: Handbook of Image and Video Processing, p. 411 (2005)Google Scholar
  12. 12.
    Jacobson, N., Gupta, M.: Design goals and solutions for display of hyperspectral images. IEEE Trans. on Geoscience and Remote Sensing 43, 2684–2692 (2005)CrossRefGoogle Scholar
  13. 13.
    Ruderman, D.: The statistics of natural images. Network: Computation in Neural Systems 5, 517–548 (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    http://www.neo.no/hyspex/ (last check : September 11, 2010)
  15. 15.
    Nascimento, S., Ferreira, F., Foster, D.: Statistics of spatial cone-excitation ratios in natural scenes. Journal of the Optical Society of America A 19, 1484–1490 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Steven Le Moan
    • 1
    • 2
  • Alamin Mansouri
    • 1
  • Yvon Voisin
    • 1
  • Jon Y. Hardeberg
    • 2
  1. 1.Le2iUniversité de BourgogneAuxerreFrance
  2. 2.ColorlabHøgskolen i GjøvikNorway

Personalised recommendations