Skip to main content

How to Overcome Perceptual Aliasing in ASIFT?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6453))

Abstract

SIFT is one of the most popular algorithms to extract points of interest from images. It is a scale+rotation invariant method. As a consequence, if one compares points of interest between two images subject to a large viewpoint change, then only a few, if any, common points will be retrieved. This may lead subsequent algorithms to failure, especially when considering structure and motion or object recognition problems. Reaching at least affine invariance is crucial for reliable point correspondences. Successful approaches have been recently proposed by several authors to strengthen scale+rotation invariance into affine invariance, using viewpoint simulation (e.g. the ASIFT algorithm). However, almost all resulting algorithms fail in presence of repeated patterns, which are common in man-made environments, because of the so-called perceptual aliasing. Focusing on ASIFT, we show how to overcome the perceptual aliasing problem. To the best of our knowledge, the resulting algorithm performs better than any existing generic point matching procedure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, M., Lowe, D.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74, 59–73 (2007)

    Article  Google Scholar 

  2. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  3. Gordon, I., Lowe, D.: Scene modelling, recognition and tracking with invariant image features. In: Proc. International Symposium on Mixed and Augmented Reality (ISMAR), pp. 110–119 (2004)

    Google Scholar 

  4. Se, S., Lowe, D., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics 21, 364–375 (2005)

    Article  Google Scholar 

  5. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22, 761–767 (2004)

    Article  Google Scholar 

  6. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)

    Article  Google Scholar 

  7. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision 65, 43–72 (2006)

    Article  Google Scholar 

  8. Musé, P., Sur, F., Cao, F., Gousseau, Y., Morel, J.M.: An a contrario decision method for shape element recognition. International Journal of Computer Vision 69, 295–315 (2006)

    Article  MATH  Google Scholar 

  9. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1465–1479 (2006)

    Article  Google Scholar 

  10. Morel, J.M., Yu, G.: ASIFT: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences 2, 438–469 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Molton, N.D., Davison, A.J., Reid, I.D.: Locally planar patch features for real-time structure from motion. In: Proc. British Machine Vision Conference, BMVC (2004)

    Google Scholar 

  12. Whitehead, S., Ballard, D.: Learning to perceive and act by trial and error. Machine Learning 7, 45–83 (1991)

    Article  Google Scholar 

  13. Schaffalitzky, F., Zisserman, A.: Planar grouping for automatic detection of vanishing lines and points. Image and Vision Computing 18, 647–658 (2000)

    Article  Google Scholar 

  14. Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Computer Vision and Image Understanding 92, 236–264 (2003)

    Article  MATH  Google Scholar 

  15. Noury, N., Sur, F., Berger, M.O.: Determining point correspondences between two views under geometric constraint and photometric consistency. Research Report 7246, INRIA (2010)

    Google Scholar 

  16. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal of Computer Vision 57, 201–218 (2004)

    Article  Google Scholar 

  17. Cao, F., Lisani, J., Morel, J.M., Musé, P., Sur, F.: A theory of shape identification. Lecture Notes in Mathematics, vol. 1948. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  18. Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt theory to image analysis: a probabilistic approach. Interdisciplinary applied mathematics. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  19. Rabin, J., Delon, J., Gousseau, Y.: A statistical approach to the matching of local features. SIAM Journal on Imaging Sciences 2, 931–958 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsiao, E., Collet, A., Hebert, M.: Making specific features less discriminative to improve point-based 3D object recognition. In: Proc. Conference on Computer Vision and Pattern Recognition, CVPR (2010)

    Google Scholar 

  21. Morel, J.M., Yu, G.: ASIFT. In: IPOL Workshop (2009), http://www.ipol.im/pub/algo/my_affine_sift (Consulted 6.30.2010)

  22. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008), http://www.vlfeat.org/ (Consulted 6.30.2010)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noury, N., Sur, F., Berger, MO. (2010). How to Overcome Perceptual Aliasing in ASIFT?. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17289-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17289-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17288-5

  • Online ISBN: 978-3-642-17289-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics