Skip to main content

A Study of Hierarchical Correlation Clustering for Scientific Volume Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6455)

Abstract

Correlation study is at the heart of time-varying multivariate volume data analysis and visualization. In this paper, we study hierarchical clustering of volumetric samples based on the similarity of their correlation relation. Samples are selected from a time-varying multivariate climate data set according to knowledge provided by the domain experts. We present three different hierarchical clustering methods based on quality threshold, k-means, and random walks, to investigate the correlation relation with varying levels of detail. In conjunction with qualitative clustering results integrated with volume rendering, we leverage parallel coordinates to show quantitative correlation information for a complete visualization. We also evaluate the three hierarchical clustering methods in terms of quality and performance.

Keywords

  • Hierarchical Cluster
  • Quality Threshold
  • Hierarchical Cluster Algorithm
  • Hierarchical Cluster Method
  • Correlation Cluster

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   109.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sauber, N., Theisel, H., Seidel, H.P.: Multifield-graphs: An approach to visualizing correlations in multifield scalar data. IEEE Transactions on Visualization and Computer Graphics 12, 917–924 (2006)

    CrossRef  Google Scholar 

  2. Qu, H., Chan, W.Y., Xu, A., Chung, K.L., Lau, K.H., Guo, P.: Visual analysis of the air pollution problem in Hong Kong. IEEE Transactions on Visualization and Computer Graphics 13, 1408–1415 (2007)

    CrossRef  Google Scholar 

  3. Glatter, M., Huang, J., Ahern, S., Daniel, J., Lu, A.: Visualizing temporal patterns in large multivariate data using textual pattern matching. IEEE Transactions on Visualization and Computer Graphics 14, 1467–1474 (2008)

    CrossRef  Google Scholar 

  4. Sukharev, J., Wang, C., Ma, K.-L., Wittenberg, A.T.: Correlation study of time-varying multivariate climate data sets. In: Proceedings of IEEE VGTC Pacific Visualization Symposium, pp. 161–168 (2009)

    Google Scholar 

  5. Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: Proceedings of IEEE Symposium on Information Visualization, pp. 52–60 (1998)

    Google Scholar 

  6. Yang, J., Peng, W., Ward, M.O., Rundensteiner, E.A.: Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In: Proceedings of IEEE Symposium on Information Visualization, pp. 105–112 (2003)

    Google Scholar 

  7. Izenman, A.J.: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning, 1st edn. Springer Texts in Statistics. Springer, Heidelberg (2008)

    CrossRef  MATH  Google Scholar 

  8. Zimek, A.: Correlation Clustering. PhD thesis, Ludwig-Maximilians-Universität München (2008)

    Google Scholar 

  9. Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications 10, 191–218 (2006)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 53–65 (1987)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, Y., Wang, C. (2010). A Study of Hierarchical Correlation Clustering for Scientific Volume Data. In: , et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)