3D Vector Flow Guided Segmentation of Airway Wall in MSCT

  • Margarete Ortner
  • Catalin Fetita
  • Pierre-Yves Brillet
  • Françoise Prêteux
  • Philippe Grenier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6454)


This paper develops a 3D automated approach for airway wall segmentation and quantification in MSCT based on a patient-specific deformable model. The model is explicitly defined as a triangular surface mesh at the level of the airway lumen segmented from the MSCT data. The model evolves according to simplified Lagrangian dynamics, where the deformation force field is defined by a case-specific generalized gradient vector flow. Such force formulation allows locally adaptive time step integration and prevents model self-intersections. The evaluations performed on simulated and clinical MSCT data have shown a good agreement with the radiologist expertise and underlined a higher potential of the proposed 3D approach for the study of airway remodeling versus 2D cross-section techniques.


Chronic Obstructive Pulmonary Disease Airway Remodel Airway Wall Deformable Model Vector Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsuoka, S., Kurihara, Y., Nakajima, Y.: Serial change in airway lumen and wall thickness at thin-section CT in asymptomatic subjects. Radiology 234, 595–603 (2005)CrossRefGoogle Scholar
  2. 2.
    King, G.G., Muller, N., Whittall, K., et al.: An analysis algorithm for measuring airway lumen and wall areas from high-resolution computed tomographic data. Am. J. of Respiratory and Critical Care Medicine 161, 574–580 (2000)CrossRefGoogle Scholar
  3. 3.
    Wiemker, R., Blaffert, T., Buelow, T., et al.: Automated assessment of bronchial lumen, wall thickness and bronchoarterial diameter ratio of the tracheobronchial tree using high-resolution CT. Int. Congress Series, vol. 1268, pp. 967–972 (2004)Google Scholar
  4. 4.
    Hoffman, E., Reinhardt, J., Sonka, M., et al.: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function. Acad. Rad. 10, 1104–1118 (2003)CrossRefGoogle Scholar
  5. 5.
    Saragaglia, A., Fetita, C., Prêteux, F., et al.: Accurate 3D quantification of bronchial parameters in MDCT. In: Proc. SPIE Mathematical Methods in Pattern and Image Analysis, vol. 5916, pp. 323–334 (2005)Google Scholar
  6. 6.
    Lo, P., van Ginneken, B., Reinhardt, J., de Bruijne, M.: Extraction of airways from CT (2009)Google Scholar
  7. 7.
    Chan, S.L., Purisima, E.O.: A new tetrahedral tesselation scheme for isosurface generation. Computers & Graphics 22, 83–90 (1998)CrossRefGoogle Scholar
  8. 8.
    Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. Computers & Graphics 30, 854–879 (2006)CrossRefGoogle Scholar
  9. 9.
    Fetita, C., Ortner, M., Brillet, P.Y., Hmeidi, Y., Preteux, F.: Airway shape assessment with visual feed-back in athma and obstructive diseases, vol. 7652, p. 76251E (2010)Google Scholar
  10. 10.
    Xu, C., Prince, J.: Generalized gradient vector flow external forces for active contours. Signal Processing 71, 131–139 (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kim, H., Kim, H., Ahn, C., et al.: Vessel Boundary Detection or its 3D Reconstruction by Using a Deformable Model (GVF Snake), vol. 27, pp. 3440–3443 (2005)Google Scholar
  12. 12.
    Bauer, C., Bischof, H.: Extracting curve skeletons from gray value images for virtual endoscopy, pp. 393–402 (2009)Google Scholar
  13. 13.
    Chen, X., Teoh, E.: 3D object segmentation using B-Surface. Image and Vision Computing 23, 1237–1249 (2005)CrossRefGoogle Scholar
  14. 14.
    Deriche, R.: Optimal edge detection using recursive filtering. In: Proc. of the 1st Int. Conf. on Computer Vision, vol. 1, pp. 501–505 (1987)Google Scholar
  15. 15.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21, 109–218 (2002)CrossRefGoogle Scholar
  16. 16.
    Hoppe, H., DeRose, T., Duchamp, T., et al.: Mesh optimization. In: SIGGRAPH 1993: Proc. Computer graphics and interactive techniques, pp. 19–26 (1993)Google Scholar
  17. 17.
    Ortner, M., Fetita, C., Brillet, P.Y., Preteux, F., Grenier, P.: Ground truth and CT image model simulation for pathophysiological human airway system, vol. 7625 (2010) 76252KGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Margarete Ortner
    • 1
  • Catalin Fetita
    • 1
  • Pierre-Yves Brillet
    • 2
  • Françoise Prêteux
    • 3
  • Philippe Grenier
    • 4
  1. 1.Dept. ARTEMISInstitut TELECOM / TELECOM SudParisEvryFrance
  2. 2.AP-HP, Avicenne HospitalUniversité Paris 13BobignyFrance
  3. 3.Mines ParisTechParisFrance
  4. 4.AP-HP, Pitié-Salpêtrière HospitalUniversité Paris 6ParisFrance

Personalised recommendations