Neue Entwicklungen in der Rehabilitation von Handfunktionsstörungen

  • C. Gerloff
  • F.C. Hummel
  • F. Müller
  • S. Peitzker
  • P. van der Smagt

Zusammenfassung

Ein erstes Ziel der Robotik war schon immer die Entwicklung von Systemen, die den Menschen ähneln. Literatur und Filmindustrie haben dafür immer Vorlagen geliefert,
  • entweder in der Entwicklung von Frankenstein-artigen Kreaturen, die aus Fleisch und Blut aufgebaut, aber in ihrer Programmierung als Robotersystem betrachtet werden können,

  • oder als perfekte Blechkisten à la C3PO, die in ihrem Verhalten den Menschen sogar übertreffen können.

Die Realität sah und sieht in vorhersehbarer Zukunft anders aus. Obwohl Robotersysteme heutzutage eine wichtige Rolle bei bestimmten Produktionsprozessen spielen, geht der Einzug des Roboters als »Haushaltshilfe« oder ähnliche Unterstützung im täglichen Leben nur schleppend voran. Die optimale Integration von Roboterhelfern in die Welt der Menschen hängt maßgeblich von deren Kooperations- und Koordinationsmöglichkeiten ab. »Ich mit dir, du mit mir, zusammen sind wir unschlagbar« ist ein Motto, das für jegliche akzeptable Integration von Mensch und Maschine maßgebend ist – umso mehr, da die Komplexität der zu bewältigenden Aufgaben zunimmt. Dieser Wunsch nach Integration ist zweideutig zu betrachten:
  • Einerseits ist sicherlich in vorhersehbarer Zukunft nicht zu erwarten, dass autonome Systeme menschenähnliche kognitive Fähigkeiten besitzen, um auf menschenähnliche Art Probleme lösen zu können (»Wir können es nicht!«),

  • andererseits ist eine solche Autonomie aber auch selten wünschenswert, da diese den Roboter auf die gleiche Ebene wie den Menschen stellen würde (»Wer korrigiert wen?«).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

14.1 Literatur

  1. Benninghoff A, Drenckhahn D (2002) Anatomie, Histologie, Embryologie, Zellbiologie; Bd 1. Urban & Fischer@Elsevier, MünchenGoogle Scholar
  2. Bitzer S, van der Smagt P (2006) Learning EMG control of a robotic hand towards active prostheses. Proceedings of ICRA, International Conference on Robotics and Automation, Orlando. S 2819–2823Google Scholar
  3. Borst C, Fischer M, Hirzinger G (1999) A fast and robust grasp planner for arbitrary 3D objects. Proceedings ICEE International Conference on Robotics and Automation. S 1890–1896Google Scholar
  4. Butterfass J (2000) Eine hochintegrierte multisensorielle Vier–Finger– Hand für Anwendungen in der Servicerobotik. Berichte aus der Robotik. 1. Shaker–verlag, Aachen. S1–S152Google Scholar
  5. Butterfass J, Fischer M, Grebenstein M (2004) Design and experiences with DLR hand II. Proceedings oft he World Automation Congress 15. S 105–110Google Scholar
  6. Castellini C, van der Smagt P (2009) Surface EMG in advanced hand prothetics. Biological Cybernetics 100(1): 35–47PubMedCrossRefGoogle Scholar
  7. Clifton R, Muir D, Ashmead D, Clarkson M (1993) Is visually guided reaching in early infancy a myth? Child development 64: 1099–1110PubMedCrossRefGoogle Scholar
  8. Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic hand–arm system. Advanced Robotics 22: 39–55CrossRefGoogle Scholar
  9. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442: 164–171PubMedCrossRefGoogle Scholar
  10. Van Hofstein C, Rönnqvist L (1988) Preparation for grasping an object. A development study. J Experimental Neurophysiology. Human Perception and Performance 14(4): 610–621CrossRefGoogle Scholar
  11. Kapandji A (1998) The Physiology of the Joints. Churchill Livingstone, EdinburghGoogle Scholar
  12. Kargov A, Asfour T, Pylaiuk C, Oberle R, Klosek H, Schulz S, Regenstein K, Bretthauer G, Dillmann R (2005) Development of an anthropomorphic hand for a mobile assistive robot. Proc. 9th Int. Conf. on Rehabilitation Robotics. S 182–186Google Scholar
  13. Navarro X, Krueger Z, Lago N, Micera S, Stieglitz T, Dario P (2005) A critic review of interfaces with the peripheral nervous system fort he control of neuroprotheses an hybrid bionic systems. J Periph Nerv System 10: 229–258CrossRefGoogle Scholar
  14. Santello M, Soechting J (1998) Gradual moulding of the hand to object contours. J Neurophysiology 79(3): 1307–1320Google Scholar
  15. Schettino L, Adamovich S, Polzner H (2003) Effects of the object shape and visual feedback on hand configuration during grasping. Experimental Brain Research 151(2): 158–166CrossRefGoogle Scholar
  16. Vogel J, Haddadin S, Simeral JD, Stavisky SD, Bacher D, Hochberg LR, Donoghue JP, van der Smagt P (2010) Continuous Control of the DLR Light–weight Robot III by a human with tetraplegia using the BrainGate2 Neural Interface System. Proc. International Symposium on Experimental Robotics (ISER), 2010Google Scholar

14.2 Literatur

  1. Bütefisch C, Hummelsheim H, Denzler P, Mauritz KH (1995) Repetitive training of isolated movement improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 130: 59–68PubMedCrossRefGoogle Scholar
  2. Farrel JF, Hoffmann HB, Snyder JL, Giuliani CA, Bohannon RW (2007) Orthotic aided training of the paretic upper limb in chronic stroke: results of a phase 1 trial. NeuroRehabilitation 22(2): 99–103Google Scholar
  3. Gowland C, deBruin H, Basmajian J et al. (1992) Agonist and antagonist activity during voluntary upper–limb movement in patients with stroke. Phys Ther 72(9): 624–633PubMedGoogle Scholar
  4. Hesse S, Werner C, Bardeleben A (2004) Der schwerbetroffene Arm ohne distale Willküraktivität – »ein Sorgenkind« der Rehabilitation nach Schlaganfall?! Neurol Rehabil 10(3): 120–126Google Scholar
  5. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single–blinded randomized trial in two centres. Stroke 36: 1960–1966PubMedCrossRefGoogle Scholar
  6. Heise KL Iuzzi G, Zimerman M, Gerloff C, Hummel F (2010) Intensive orthosis–based home training of the upper limb leads to pronounced improvements in patients in the chronic stage after brain lesions. Abstracts from the 2010 World Congress of Neurorehabilitation. Neurorehabil Neural Repair Online First, published on March 12, 2010 as doi:10.1177/1545968310365984Google Scholar
  7. Kwakkel G, Kollen, BJ, van der Grond J et al. (2003) Probability of regaining dexterity in the flaccid upper limb: The impact of severity of paresis and time since onset in acute stroke. Stroke 34: 2181–2186PubMedCrossRefGoogle Scholar
  8. Langhammer B, Staghell JK (2000) Bobath or motor relearning programme A Comparison of two different approaches of physio– therapy in stroke rehabilitation: a randomized controlled study. Clinical Rehabilitation 14: 361–369PubMedCrossRefGoogle Scholar
  9. Nelles G (2004) Cortical reorganization – effects of intensive therapy. Restorative Neurology and Neuroscience 22(3–5): 239–244PubMedGoogle Scholar
  10. O’Driscoll SW, Horii E, Ness R, Cahalan TD, Richards RR, An KN (1992) The relationship between wrist position, grasp size, and grip strength. The Journal of Hand Surgery 17A: 169–177CrossRefGoogle Scholar
  11. Ochoa JM, Kamper D (2009) Development of an actuated cable orthotic glove to provide assistance of finger extension to stroke survivors. Revista Ingeneria Biomedica 3: 75–82Google Scholar
  12. Peitzker S (2010) Greiftraining mit der Orthese SaeboFlex für Schlaganfallpatienten. Praxis Ergotherapie 23(2): 96–101Google Scholar
  13. Sterr A, Freivogel S (2003) Motor–improvement following intensive training in Low–functioning chronic hemiparesis. Neurology 61: 842–844PubMedGoogle Scholar
  14. Sterr A, Freivogel S (2004) Intensive training in chronic upper limb hemiparesis does not increase spasticity or synergies. Neurology 63: 2176–2177PubMedGoogle Scholar
  15. Stuart M, Butler JE, Collins DF, Taylor JL, Gandevia SC (2002) The history of contraction of the wrist flexors can change cortical excitability. J Physiol 545(3): 731–737PubMedCrossRefGoogle Scholar

14.3 Literatur

  1. Alonso–Alonso M, Fregni F, Pascual–Leone A (2007) Brain stimulation in poststroke rehabilitation. Cerebrovasc Dis 24(Suppl 1): 157–166PubMedCrossRefGoogle Scholar
  2. Ameli M, Grefkes C, Kemper F, Riegg FP, Rehme AK, Karbe H et al. (2009) Differential effects of high–frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 66(3): 298–309PubMedCrossRefGoogle Scholar
  3. Baker JM, Rorden C, Fridriksson J (2010) Using transcranial directcurrent stimulation to treat stroke patients with aphasia. Stroke 41(6): 1229–1236PubMedCrossRefGoogle Scholar
  4. Barker AT, Jalinous R, Freeston IL (1985) Non–invasive magnetic stimulation of human motor cortex. Lancet 1(8437): 1106–1107PubMedCrossRefGoogle Scholar
  5. Bliem B, Muller–Dahlhaus JF, Dinse HR, Ziemann U (2008) Homeostatic Metaplasticity in the Human Somatosensory Cortex. J Cogn Neurosci Feb 27Google Scholar
  6. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual–Leone A, Fregni F (2007) Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 25(2): 123–129PubMedGoogle Scholar
  7. Brown JA, Lutsep H, Cramer SC, Weinand M (2003) Motor cortex stimulation for enhancement of recovery after stroke: case report. Neurol Res 25(8): 815–818PubMedCrossRefGoogle Scholar
  8. Brown JA, Lutsep HL, Weinand M, Cramer SC (2006) Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58(3): 464–473PubMedGoogle Scholar
  9. Celnik P, Hummel F, Harris–Love M, Wolk R, Cohen LG (2007) Somatosensory Stimulation Enhances the Effects of Training Functional Hand Tasks in Patients With Chronic Stroke. Arch Phys Med Rehabil 88(11): 1369–1376PubMedCrossRefGoogle Scholar
  10. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA–mediated tonic inhibition promotes functional recovery after stroke. Nature 468(7321): 305–309PubMedCrossRefGoogle Scholar
  11. Conforto AB, Kaelin–Lang A, Cohen LG (2002) Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 51(1): 122–125PubMedCrossRefGoogle Scholar
  12. Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20(2): 176–181PubMedCrossRefGoogle Scholar
  13. Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F et al. (2007) Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36(Suppl 2): T164–T173PubMedCrossRefGoogle Scholar
  14. Ezendam D, Bongers RM, Jannink MJ (2009) Systematic review of the effectiveness of mirror therapy in upper extremity function. Disabil Rehabil 31(26):2135–2149PubMedCrossRefGoogle Scholar
  15. Farrell JF, Hoffman HB, Snyder JL, Giuliani CA, Bohannon RW (2007) Orthotic aided training of the paretic upper limb in chronic stroke: results of a phase 1 trial. NeuroRehabilitation 22(2): 99–103PubMedGoogle Scholar
  16. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG (2004) Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127(pt4): 747–758PubMedCrossRefGoogle Scholar
  17. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): A tool for double–blind sham–controlled clinical studies in brain stimulation. Clin Neurophysiol 117(4): 845–850PubMedCrossRefGoogle Scholar
  18. Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H et al. (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2): 236–246PubMedCrossRefGoogle Scholar
  19. Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406(6792): 147–150PubMedCrossRefGoogle Scholar
  20. Hoffman HB, Glyn LB (2011) New design of dynamic orthoses for neurological conditions. NeuroRehabilitation 28(1): 55–61PubMedGoogle Scholar
  21. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45(2): 201–206PubMedCrossRefGoogle Scholar
  22. Huang YZ, Sommer M, Thickbroom G, Hamada M, Pascual–Leonne A, Paulus W et al. (2009) Consensus: New methodologies for brain stimulation. Brain Stimul 2(1): 2–13PubMedCrossRefGoogle Scholar
  23. Hummel FC, Cohen LG (2005) Drivers of brain plasticity. Curr Opin Neurol 18(6): 667–674PubMedCrossRefGoogle Scholar
  24. Hummel FC, Cohen LG (2006) Non–invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8): 708–712PubMedCrossRefGoogle Scholar
  25. Hummel FC, Celnik P, Pascual–Leone A, Fregni F, Byblow WD, Butefisch C et al. (2008) Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation 1(4): 370–382PubMedCrossRefGoogle Scholar
  26. Hummel FC, Heise K, Celnik P, Floel A, Gerloff C, Cohen LG (2010) Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging 31(12): 2160–2168PubMedCrossRefGoogle Scholar
  27. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64(5): 872–875PubMedCrossRefGoogle Scholar
  28. Johansen–Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99(22): 14518–14523PubMedCrossRefGoogle Scholar
  29. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequencydependent electrical stimulation of the visual cortex. Curr Biol 18(23): 1839–1843PubMedCrossRefGoogle Scholar
  30. Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65(3): 466–468PubMedCrossRefGoogle Scholar
  31. Kolominsky–Rabas PL, Heuschmann PU (2002) Incidence, etiology and long–term prognosis of stroke. Fortschr Neurol Psychiatr 70(12): 657–662PubMedCrossRefGoogle Scholar
  32. Kolominsky–Rabas PL, Heuschmann PU, Marschall D, Emmert M, Baltzer N, Neundorfer B et al. (2006) Lifetime cost of ischemic stroke in Germany: results and national projections from a populationbased stroke registry: the Erlangen Stroke Project. Stroke 37(5): 1179–1183PubMedCrossRefGoogle Scholar
  33. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G (2010) Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75(24): 2176–2184PubMedCrossRefGoogle Scholar
  34. Liuzzi G, Freundlieb N, Ridder V, Hoppe J, Heise K, Zimerman M et al. (2010) The involvement of the left motor cortex in learning of a novel action word lexicon. Curr Biol 20(19): 1745–1751PubMedCrossRefGoogle Scholar
  35. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26(22): 6096–102PubMedCrossRefGoogle Scholar
  36. Luft AR, McCombe–Waller S, Whitall J, Forrester LW, Macko R, Sorkin JD et al. (2004) Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. Jama 292(15): 1853–1861PubMedCrossRefGoogle Scholar
  37. Martin PI, Naeser MA, Ho M, Treglia E, Kaplan E, Baker EH et al. (2009) Research with transcranial magnetic stimulation in the treatment of aphasia. Curr Neurol Neurosci Rep 9(6): 451–458PubMedCrossRefGoogle Scholar
  38. Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA et al. (2008)Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul 1(4): 326–336PubMedCrossRefGoogle Scholar
  39. Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3): 400–409PubMedCrossRefGoogle Scholar
  40. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Helm–Estabrooks N et al. (2005) Improved naming after TMS treatments in a chronic, global aphasia patient––case report. Neurocase 11(3): 182–193PubMedCrossRefGoogle Scholar
  41. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M et al. (2005) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open–protocol study. Brain Lang 93(1): 95–105PubMedCrossRefGoogle Scholar
  42. Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS et al. (2005) Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol Jul 7Google Scholar
  43. Nitsche MA, Cohen LG, Wassermann E, Priori A, Lang N, Antal A et al. (2008) Transcranial direct current stimulation: State of the art 2008. Brain Stimulation 1(3): 206–223PubMedCrossRefGoogle Scholar
  44. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use–dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16(2): 785–807PubMedGoogle Scholar
  45. Nyffeler T, Cazzoli D, Hess CW, Muri RM (2009) One session of repeated parietal theta burst stimulation trains induces long–lasting improvement of visual neglect. Stroke 40(8): 2791–2796PubMedCrossRefGoogle Scholar
  46. Plow EB, Carey JR, Nudo RJ, Pascual–Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke 40(5): 1926–1931PubMedCrossRefGoogle Scholar
  47. Poreisz C, Boros K, Antal A, Paulus W (2007) Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull 72(4–6): 208–214PubMedCrossRefGoogle Scholar
  48. Rehme AK, Fink GR, von Cramon DY, Grefkes C (2010) The Role of the Contralesional Motor Cortex for Motor Recovery in the Early Days after Stroke Assessed with Longitudinal fMRI. Cereb Cortex Sep 2Google Scholar
  49. Reis J, Robertson E, Krakauer JW, Rothwell J, Marshall L, Gerloff C et al. (2008) Consensus: »Can tDCS and TMS enhance motor learning and memory formation?« Brain Stimul 1(4): 363–369CrossRefGoogle Scholar
  50. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E et al. (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA 106(5): 1590–1595PubMedCrossRefGoogle Scholar
  51. Rossi S, Hallett M, Rossini PM, Pascual–Leone A (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12): 2008–2039PubMedCrossRefGoogle Scholar
  52. Scheidtmann K, Fries W, Muller F, Koenig E (2001) Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double–blind study. Lancet 358(9284): 787–790PubMedCrossRefGoogle Scholar
  53. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN et al. (2004) Preconditioning of low–frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13): 3379–3385PubMedCrossRefGoogle Scholar
  54. Sparing R, Thimm M, Hesse MD, Kust J, Karbe H, Fink GR (2009) Bidirectional alterations of interhemispheric parietal balance by noninvasive cortical stimulation. Brain 132(pt11): 3011–3020PubMedCrossRefGoogle Scholar
  55. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain123 (pt3): 572–584CrossRefGoogle Scholar
  56. Taub E, Miller NE, Novack TA, Cook EWd, Fleming WC, Nepomuceno CS et al. (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74(4): 347–354PubMedGoogle Scholar
  57. Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF (1996) Lifetime cost of stroke in the United States. Stroke 27(9): 1459–1466PubMedCrossRefGoogle Scholar
  58. Terney D, Chaieb L, Moliadze V, Antal A, Paulus W (2008) Increasing human brain excitability by transcranial high–frequency random noise stimulation. J Neurosci 28(52): 14147–55PubMedCrossRefGoogle Scholar
  59. Wagner T, Fregni F, Eden U, Ramos–Estebanez C, Grodzinsky A, Zahn M et al. (2006) Transcranial magnetic stimulation and stroke: A computer–based human model study. Neuroimage Feb 10Google Scholar
  60. Wagner T, Valero–Cabre A, Pascual–Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9: 527–565PubMedCrossRefGoogle Scholar
  61. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126(pt11): 2476–2496PubMedCrossRefGoogle Scholar
  62. Wassermann EM, Grafman J (2005) Recharging cognition with DC brain polarization. Trends Cogn Sci 9(11): 503–505PubMedCrossRefGoogle Scholar
  63. Werhahn KJ, Conforto AB, Kadom N, Hallett M, Cohen LG (2003) Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann Neurol 54(4):464–472PubMedCrossRefGoogle Scholar
  64. Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D et al. (2006) Effect of constraint–induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama 296(17): 2095–104PubMedCrossRefGoogle Scholar
  65. Zittel S, Weiller C, Liepert J (2007) Reboxetine improves motor function in chronic stroke. A pilot study. J Neurol 254(2): 197–201PubMedCrossRefGoogle Scholar
  66. Zittel S, Weiller C, Liepert J (2008) Citalopram improves dexterity in chronic stroke patients. Neurorehabil Neural Repair 22(3): 311–314PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. Gerloff
    • 1
  • F.C. Hummel
    • 2
  • F. Müller
    • 3
  • S. Peitzker
  • P. van der Smagt
    • 4
  1. 1.Klinik und Poliklinik für NeurologieUniversität HamburgHamburg
  2. 2.Klinik und Poliklinik für NeurologieUniversität HamburgHamburg
  3. 3.Schön Klinik Bad AiblingBad Aibling
  4. 4.Institut für Robotik und MechatronikDeutsches Zentrum für Luft- und Raumfahrt (DLR)Oberpfaffenhofen

Personalised recommendations