Skip to main content

Parametric Estimation of Risk Neutral Density Functions

  • Chapter
  • First Online:
Handbook of Computational Finance

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

This chapter deals with the estimation of risk neutral distributions for pricing index options resulting from the hypothesis of the risk neutral valuation principle. After justifying this hypothesis, we shall focus on parametric estimation methods for the risk neutral density functions determining the risk neutral distributions. We we shall differentiate between the direct and the indirect way. Following the direct way, parameter vectors are estimated which characterize the distributions from selected statistical families to model the risk neutral distributions. The idea of the indirect approach is to calibrate characteristic parameter vectors for stochastic models of the asset price processes, and then to extract the risk neutral density function via Fourier methods. For every of the reviewed methods the calculation of option prices under hypothetically true risk neutral distributions is a building block. We shall give explicit formula for call and put prices w.r.t. reviewed parametric statistical families used for direct estimation. Additionally, we shall introduce the Fast Fourier Transform method of call option pricing developed in Carr and Madan [J. Comput. Finance 2(4):61–73, 1999]. It is intended to compare the reviewed estimation methods empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, L., & Andreasen, J. (2000). Jump-diffusion models: Volatility smile fitting and numerical methods for pricing. Review of Derivatives Research, 4(3), 231–262.

    Article  Google Scholar 

  • Bahra, B. (1997). Implied risk-neutral probability density functions from option prices. Working paper, Bank of England.

    Google Scholar 

  • Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options. Review of Financial Studies, 9(1), 69–107.

    Article  Google Scholar 

  • Biagini, S., & Cont, R. (2006). Model-free representation of pricing rules as conditional expectations. In J. Akahori, S. Ogawa, & S. Watanabe (Eds.), Proceedings of the 6th Ritsumeikan International Symposium – Stochastic Processes and Applications to Mathematical Finance (pp. 53–66). Singapore: World Scientific.

    Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–659.

    Article  Google Scholar 

  • Carr, P., & Madan, D. (1999). Option valuation using the fast fourier transform. Journal of Computational Finance, 2(4), 61–73.

    Google Scholar 

  • Cizek, P., Härdle, W., & Weron, R. (2005). Statistical tools in finance and insurance. Berlin: Springer

    Google Scholar 

  • Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. London: Chapman & Hall.

    MATH  Google Scholar 

  • Corrado, C., & Su, T. (1997). Implied volatility skew and stock index skewness and kurtosis implied by s& p 500 index option prices. Journal of Derivatives, 4, 8–19.

    Article  Google Scholar 

  • Delbaen, F., & Schachermayer, M. (2006). Mathematics of arbitrage. Berlin: Springer.

    MATH  Google Scholar 

  • Dudley, R. M. (2002). Real analysis and probability. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Fabozzi, F. J., Tunaru, R., & Albotas, G. (2009). Estimating risk-neutral density with parametric models in interest rate markets. Quantitative Finance, 9(1), 55–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Fengler, M. (2005). Semiparametric modeling of implied volatility, Springer Finance

    Google Scholar 

  • Föllmer, H., & Schied, A. (2004). Stochastic finance (2nd ed.). Berlin: de Gruyter

    Google Scholar 

  • Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343.

    Article  Google Scholar 

  • Hugonnier, J., Kramkov, D., & Schachermayer, W. (2005). On utility-based pricing of contingent claims in complete markets. Mathematical Finance, 15(2), 203–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Jackwerth, J. (2000). Recovering risk aversion from option prices and realized returns. Review of Financial Studies, 1(2), 433–451.

    Article  Google Scholar 

  • Jondeau, E., & Rockinger, M. (2000). Reading the smile: The message conveyed by methods which infer risk neutral densities. Journal of International Money and Finance, 19, 885–915.

    Article  Google Scholar 

  • Lee, R. (2004). Option pricing by transform methods: extensions, unifications and error control. Journal of Computational Finance, 7(3), 51–86.

    Google Scholar 

  • Melick, W., & Thomas, C. (1997). Recovering an asset’s implied pdf from option prices: An application to crude oil crisis. Journal of Financial and Quantitative Analysis, 32, 91–115.

    Article  Google Scholar 

  • Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–183.

    Article  MATH  Google Scholar 

  • Ritchey, R. J. (1990). Call option valuation for discrete normal mixtures. Journal of Financial Research, 13(4), 285–295.

    Google Scholar 

  • Rudin, W. (1974). Real and complex analysis (2nd ed.). New York: McGraw-Hill.

    MATH  Google Scholar 

  • Savickas, R. (2002). A simple option-pricing formula. The Financial Review, 37, 207–226.

    Article  Google Scholar 

  • Savickas, R. (2005). Evidence on delta hedging and implied volatilities for black-scholes, gamma and weibull option-pricing models. Journal of Financial Research, 28, 299–317.

    Article  Google Scholar 

  • Söderlind, P., & Swensson, L. (1997). New techniques to extract market expectation from financial instruments. Journal of Monetary Economics, 40, 383–429.

    Article  Google Scholar 

  • Walker, J. S. (1996). Fast fourier transforms. Boca Raton: CRC Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grith, M., Krätschmer, V. (2012). Parametric Estimation of Risk Neutral Density Functions. In: Duan, JC., Härdle, W., Gentle, J. (eds) Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17254-0_10

Download citation

Publish with us

Policies and ethics