Skip to main content

Abstract

It is generally accepted that training in statistics must include some exposure to the mechanics of computational statistics. This exposure to computational methods is of an essential nature when we consider extremely high dimensional data. Computer aided techniques can help us to discover dependencies in high dimensions without complicated mathematical tools. A draftman’s plot (i.e. a matrix of pairwise scatterplots like in Figure 1.14) may lead us immediately to a theoretical hypothesis (on a lower dimensional space) on the relationship of the variables. Computer aided techniques are therefore at the heart of multivariate statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Breiman, L., Friedman, J. H., Olshen, R. and Stone, C. J. (1984). Classification and Regression Trees, Wadsworth, Belmont.

    MATH  Google Scholar 

  • Cook, R. D. and Weisberg, S. (1991). Comment on “sliced inverse regression for dimension reduction”, Journal of the American Statistical Association 86(414): 328–332.

    Article  Google Scholar 

  • Duan, N. and Li, K.-C. (1991). Slicing regression: A link-free regression method, Annals of Statistics 19(2): 505–530.

    Article  MathSciNet  MATH  Google Scholar 

  • EUNITE (2001). Electricity load forecast competition of the EUropean Network on Intelligent TEchnologies for Smart Adaptive Systems, http://neuron.tuke.sk/competition/ .

  • Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit classification, unpublished manuscript.

    Google Scholar 

  • Friedman, J. H. and Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis, IEEE Transactions on Computers C 23: 881–890.

    Article  Google Scholar 

  • Gale, D., Kuhn, H. W. and Tucker, A. W. (1951). Linear Programming and the Theory of Games, in T. C. Koopmans (ed.), Activity Analysis of Production and Allocation, John Wiley & Sons, New York, NY.

    Google Scholar 

  • Hall, P. and Li, K.-C. (1993). On almost linearity of low dimensional projections from high dimensional data, Annals of Statistics 21(2): 867–889.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, J. L. and Lehman, E. L. (1956). The efficiency of some non-parametric competitors of the t-test, Annals of Mathematical Statistics 27: 324–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. (1985). Projection pursuit, Annals of Statistics 13(2): 435–475.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, M. C. and Sibson, R. (1987). What is projection pursuit? (with discussion), Journal of the Royal Statistical Society, Series A 150(1): 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, K. and Stuart, S. (1977). Distribution Theory, Vol. 1 of The Advanced Theory of Statistics, Griffin, London.

    MATH  Google Scholar 

  • Kruskal, J. B. (1969). Toward a practical method which helps uncover the structure of a set of observations by finding the line tranformation which optimizes a new “index of condensation”, in R. C. Milton and J. A. Nelder (eds), Statistical Computation, Academic Press, New York, pp. 427–440.

    Google Scholar 

  • Kruskal, J. B. (1972). Linear transformation of multivariate data to reveal clustering, in R. N. Shepard, A. K. Romney and S. B. Nerlove (eds), Multidimensional Scaling: Theory and Applications in the Behavioural Sciences, Vol. 1, Seminar Press, London, pp. 179–191.

    Google Scholar 

  • Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion), Journal of the American Statistical Association 86(414): 316–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein’s lemma, Journal of the American Statistical Association 87: 1025–1039.

    Article  MathSciNet  MATH  Google Scholar 

  • Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London 209: 415–446.

    MATH  Google Scholar 

  • Schott, J. R. (1994). Determining the dimensionality in sliced inverse regression, Journal of the American Statistical Association 89(425): 141–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Securities and Exchange Commission (2004). Securities and Exchange Commission: Archive of historical documents, http://www.sec.gov/cgi-bin/srch-edgar .

  • Vapnik (1995). The Nature of Statistical Learning Theory, Springer, New York, NY.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Härdle, W.K., Simar, L. (2012). Computationally Intensive Techniques. In: Applied Multivariate Statistical Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17229-8_19

Download citation

Publish with us

Policies and ethics