Skip to main content

Modelling Coastline Change of the Darss-Zingst Peninsula with Sedsim

  • Chapter
  • First Online:
  • 1547 Accesses

Part of the book series: Central and Eastern European Development Studies (CEEDES) ((CEEDES))

Abstract

Coastlines do not change because of sea level variation alone. Instead, the changes are the result of a complex interaction between climate and geologically controlled processes. Especially on a local scale, sedimentary dynamics play an important role. Even with a rising sea level, concurrent sediment accumulation may prevent coastline retreat. On the other hand, erosion may accelerate marine transgressions remarkably. The southern coast of the Baltic Sea is an impressive example for the impact of erosion, transport, and accumulation of sediments to coastline change during the Holocene. Since the end of the Littorina transgression the coastline morphology has been shaped here mainly by longshore sediment transport controlled by the geological situation and glacioisostatic influence. The longshore sediment transport is driven by wind and consequently waves shaping young Holocene structures like the Darss-Zingst peninsula. In order to model these processes, Sedsim (SEDimentary Basin SIMulation), a stratigraphic forward modelling software, has been applied for the Darss-Zingst peninsula on a centennial time scale. In Sedsim, the sedimentary dynamics are modelled by an approximation to the Navier–Stokes equation. Using high-resolution digital elevation data, information about the local wave characteristics, geology, estimates of sea level rise, and experimental scenarios for the development of the Darss-Zingst peninsula through the coming 840 years are presented. The results of the experiments show possible implications to the area of investigation and may serve as a basis for decision makers in coastal zone management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea Basin. Regional Climate Studies, 474 p

    Google Scholar 

  • Björck S (1995) A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary International 27:19–40

    Article  Google Scholar 

  • Commonwealth Science and Industrial Research Organisation (CSIRO) Petroleum, Australia (2004) SEDSIM demonstration manual. PC demonstration 2004. http://strata.geol.sc.edu/PDF-Files/Simulations/SedsimManual2004.pdf: 23 pp. Accessed 30.09.2008

  • Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dynamics 58:199–212. doi:10.1007/s10236-008-0141-x

    Article  Google Scholar 

  • Hammarklint T (2009) Swedish Sea level series – a climate indicator. Swedish Meteorological and Hydrological Institute, 5p

    Google Scholar 

  • Harff J, Frischbutter A, Lampe R, Meyer M (2001) Sea level change in the Baltic Sea – interrelation of climatic and geological processes. In: Gerhard J, Harrison WE, Hanson BM (eds) Geological perspectives of climate change. American Association of Petroleum Geologists Bulletin Special Publication, Tulsa, Oklahoma, pp 231–250

    Google Scholar 

  • Harff J, Bobertz B, Graf G (2009) Dynamics of natural and anthropogenic sedimentation (DYNAS). Journal of Marine Systems 75(3–4):315–316

    Google Scholar 

  • Harff J, Meyer M (2007) Changing Holocene coastal zones of the Baltic Sea – a modeling approach. In: Harff J, Lüth F (eds) Sinking coasts-geosphere, ecosphere and anthroposphere of the Holocene Southern Baltic Sea. Berichte der Römisch-Germanischen Kommission, vol 88, pp 241–266

    Google Scholar 

  • Heck H-L, Breitbach J, Büttner K, Groba E, König G, Stahff U, Tattenberg P, Vollbrecht K (1957) Geologische Karte des Norddeutschen Flachlandes, 1:1000000. Geologische Karte, Einheitsblatt 10:2 sheets, Berlin

    Google Scholar 

  • Hoffmann G, Musolff A, Meyer T, Schafmeister M-Th (2004) Der geologische Aufbau des oberflächennahen Grundwasserstockwerkes im Nordosten der Halbinsel Gnitz (Usedom/Mecklenburg-Vorpommern). Rostocker Meeresbiologische Beiträge 12:9–21

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Hupfer P, Harff J, Sterr H, Stigge HJ (eds) (2003) Der Wasserstand an der Transgressionsküste der südwestlichen Ostsee. Entwicklung – Sturmfluten – Klimawandel. Die Küste 66:311p

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the IVth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Janke W, Lampe R (1998) Die Entwicklung der Nehrung Fischland – Darß – Zingst und ihres Umlandes seit der Litorina-Transgression und die Rekonstruktion ihrer subrezenten Dynamik mittels historischer Karten. Z Geomorph N F, Suppl-Bd 112:177–194. Berlin – Stuttgart

    Google Scholar 

  • Lampe R (2002) Holocene evolution and coastal dynamics of the Fischland-Darss-Zingst peninsula. Greifswalder Geographische Arbeiten 27:155–164

    Google Scholar 

  • Lampe R, Endtmann E, Janke W, Meyer H, Lübke H, Harff J, Lemke W (2005) A new relative sea-level curve for the Wismar Bay, N-German Baltic coast (Eine neue relative Meeresspiegelkurve für die Wismarbucht, norddeutsche Ostseeküste). Meyniana 57:5–35

    Google Scholar 

  • Land Survey Administration Mecklenburg-Vorpommern (2006) Digital elevation model 25 – DGM25. Digital elevation model, grid size 25 m. Schwerin, Germany

    Google Scholar 

  • Li F, Dyt C, Griffiths C (2004) 3D modelling of the isostatic flexural deformation. Computers & Geosciences 30:1105–1115

    Article  Google Scholar 

  • Lehfeldt R, Milbradt P (2000) Longshore sediment transport modeling in 1 and 2 dimensions. Advances in Hydro-Science and Engineering. Proceedings of the 4th international conference on Hydro-science and engineering, Seoul. Abstract Volume 262

    Google Scholar 

  • Martinez PA, Harbaugh JW (1993) Simulating nearshore environments. Pergamon Press, New York, 265p

    Google Scholar 

  • Meier HEM, Broman B, Kjellstrom E (2004): Simulated sea level in past and future climates of the Baltic Sea. Climate Research 27:59–75

    Article  Google Scholar 

  • Metz B, Davidson O, Bosch P, Dave R, Meyer L (ed) (2007) Contribution of Working Group III to the IVth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge, 851p

    Google Scholar 

  • Meyer M (2003) Modelling prognostic coast line scenarios for the southern Baltic Sea. Baltica 16:21–30

    Google Scholar 

  • Meyer M, Harff J, Gogina M, Barthel A (2008) Coastline changes of the Darss-Zingst Peninsula – a modelling approach. Journal of Marine Systems 74:S147–S154

    Google Scholar 

  • Miettinen A (2004) Holocene sea-level changes and glacio-isostasy in the Gulf of Finland, Baltic Sea. Quaternary International 120:91–104

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Hamburg, Germany, Report No. 218:90 pp

    Google Scholar 

  • Rosenhagen G, Bork I (2009) The extreme storm surge at the German coasts of the Baltic Sea in November 1872 – reanalysis of the wind fields for coastal purposes. In: Witkowski A, Harff J, Isemer H-J (eds) International conference on climate change. The environmental and socio-economic response in the southern Baltic region, University of Szczecin, Poland, 25–28 May

    Google Scholar 

  • Rosentau A, Meyer M, Harff J, Dietrich R, Richter A (2007) Relative sea level change in the Baltic Sea since the Litorina Transgression. Zeitschrift für Geologische Wissenschaften 35(1/2):3–16

    Google Scholar 

  • Schumacher W (2000) Zur geomorphologischen Entwicklung des Darsses – ein Beitrag zur Küstendynamik und zum Küstenschutz an der südlichen Ostseeküste. Zeitschrift für Geologische Wissenschaften 28:601–613

    Google Scholar 

  • Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea, 2nd edn. Baltic Sea Science Congress, Stockholm, Poster #147

    Google Scholar 

  • Tauber F, Lemke W (1995) Map of sediment distribution in the western Baltic Sea. Deutsche Hydrographische Zeitschrift 47(3):171–178

    Article  Google Scholar 

  • Tauber F, Lemke W, Endler R (1999) Map of sediment distribution in the Western Baltic Sea (1:100 000), sheet Falster – Møn. Deutsche Hydrographische Zeitschrift 51(1):5–32

    Article  Google Scholar 

  • Tetzlaff DM, Harbaugh JW (1989) Simulating clastic sedimentation. Computer methods in the geosciences. Van Nostrand Reinhold, New York, 196p

    Google Scholar 

  • Voß R, Mikolajewicz U, Cubasch U (1997) Langfristige Klimaänderungen durch den Anstieg der CO2-Konzentration in einem gekoppelten Atmosphäre-Ozean-Modell. Annalen der Meteorologie 34:3–4

    Google Scholar 

  • Weisse R, Storch Hv (2009) Marine climate and climate change: storms, wind waves and storm surges. Springer-Praxis books in Environmental sciences, Springer, Berlin; Chichester, UK, 219p

    Google Scholar 

  • Weisse R, Storch Hv, Callies U, Chrastansky A, Feser F, Grabemann I, Guenther H, Pluess A, Stoye Th, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteo-marine reanalyses and climate change projections: results for Northern Europe and potentials for coastal and offshore applications. Bulletin of the American Metrological Society 90:849–860. http://dx.doi.org/10.1175/2008BAMS2713.1

    Article  Google Scholar 

Download references

Acknowledgements

This chapter is a result of the project SINCOS (Sinking Coasts – Geosphere, Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea) which was funded by the German Research Foundation.

The compilation of digital elevation data, provided by the Land Survey Administration Mecklenburg-Vorpommern and the Federal Maritime and Hydrographic Agency, was prepared by Mayya Gogina, Leibniz Institute for Baltic Sea Research Warnemünde, Germany. Anke Barthel, PhD student at the Ernst-Moritz-Arndt University Greifswald, Germany, digitized the terrestrial sediment distribution map. Prof. Dr. Cedric Griffiths, CSIRO Australia, granted access to the SEDSIM simulation software and the incorporated hardware resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, M., Harff, J., Dyt, C. (2011). Modelling Coastline Change of the Darss-Zingst Peninsula with Sedsim. In: Harff, J., Björck, S., Hoth, P. (eds) The Baltic Sea Basin. Central and Eastern European Development Studies (CEEDES). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17220-5_14

Download citation

Publish with us

Policies and ethics