Skip to main content

Mitochondria as Potential Targets in Antidiabetic Therapy

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 203))

Abstract

A growing body of evidence suggests that mitochondrial abnormalities are involved in diabetes and associated complications. This chapter gives an overview about the effects of diabetes in mitochondrial function of several tissues including the pancreas, skeletal and cardiac muscle, liver, and brain. The realization that mitochondria are at the intersection of cells’ life and death has made them a promising target for drug discovery and therapeutic interventions. Here, we also discuss literature that examined the potential protective effect of insulin, insulin-sensitizing drugs, and mitochondrial-targeted antioxidants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahrén B (2000) Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43:393–410

    PubMed  Google Scholar 

  • Ahrén B (2005) Type 2 diabetes, insulin secretion and beta-cell mass. Curr Mol Med 5:275–286

    PubMed  Google Scholar 

  • Aliev G, Liu J, Shenk JC et al (2009) Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 13:320–333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anello M, Lupi R, Spampinato D et al (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48:282–289

    CAS  PubMed  Google Scholar 

  • Balkis Budin S, Othman F, Louis SR et al (2009) Effect of alpha lipoic acid on oxidative stress and vascular wall of diabetic rats. Rom J Morphol Embryol 50:23–30

    PubMed  Google Scholar 

  • Basu R, Oudit GY, Wang X et al (2009) Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol 297:H2096–H2108

    CAS  PubMed  Google Scholar 

  • Bedogni B, Pani G, Colavitti R et al (2003) Redox regulation of cAMPresponsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. J Biol Chem 278:16510–16519

    CAS  PubMed  Google Scholar 

  • Befroy DE, Petersen KF, Dufour S et al (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56:1376–1381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bogacka I, Xie H, Bray GA, Smith SR (2005) Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54:1392–1399

    CAS  PubMed  Google Scholar 

  • Boirie Y, Short KR, Ahlman B et al (2001) Tissue-specific regulation of mitochondrial and cytoplasmic protein synthesis rates by insulin. Diabetes 50:2652–2658

    CAS  PubMed  Google Scholar 

  • Bolten CW, Blanner PM, McDonald WG et al (2007) Insulin sensitizing pharmacology of thiazolidinediones correlates with mitochondrial gene expression rather than activation of PPARgamma. Gene Regul Syst Bio 1:73–82

    PubMed Central  PubMed  Google Scholar 

  • Boudina S, Sena S, O'Neill BT et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695

    PubMed  Google Scholar 

  • Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466

    CAS  PubMed  Google Scholar 

  • Boushel R, Gnaiger E, Schjerling P et al (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790–796

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bugger H, Chen D, Riehle C et al (2009) Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes 58:1986–1997

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    CAS  PubMed  Google Scholar 

  • Cardoso S, Correia S, Santos RX et al (2009a) Insulin is a two-edged knife on the brain. J Alzheimers Dis 18:483–507

    CAS  PubMed  Google Scholar 

  • Cardoso S, Santos R, Correia S et al (2009b) Insulin and insulin-sensitizing drugs in neurodegeneration: mitochondria as therapeutic targets. Pharmaceuticals 2:250–286

    PubMed Central  CAS  Google Scholar 

  • Coletta DK, Sriwijitkamol A, Wajcberg E et al (2009) Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. Diabetologia 52:723–732

    CAS  PubMed  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC et al (2000) Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    CAS  PubMed  Google Scholar 

  • Cooney GJ, Thompson AL, Furler SM et al (2002) Muscle long-chain acyl CoA esters and insulin resistance. Ann NY Acad Sci 967:196–207

    CAS  PubMed  Google Scholar 

  • Cui L, Jeong H, Borovecki F et al (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    CAS  PubMed  Google Scholar 

  • Deng S, Vatamaniuk M, Huang X et al (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53:624–632

    CAS  PubMed  Google Scholar 

  • Dhanasekaran A, Kotamraju S, Kalivendi SV et al (2004) Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem 279:37575–37587

    CAS  PubMed  Google Scholar 

  • Edwards JL, Quattrini A, Lentz SI et al (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53:160–169

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ernster L, Forsmark P, Nordenbrand K (1992) The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. Biofactors 3:241–248

    CAS  PubMed  Google Scholar 

  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52:1–8

    CAS  PubMed  Google Scholar 

  • Fowler SP, Williams K, Resendez RG et al (2008) Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity (Silver Spring) 16:1894–1900

    Google Scholar 

  • Fox CS, Coady S, Sorlie PD et al (2007) Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation 115:1544–1550

    PubMed  Google Scholar 

  • Fuenzalida K, Quintanilla R, Ramos P et al (2007) Peroxisome proliferator-activated receptor γ up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 282:37006–37015

    CAS  PubMed  Google Scholar 

  • Fujisawa K, Nishikawa T, Kukidome D et al (2009) TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis. Biochem Biophys Res Commun 379:43–48

    CAS  PubMed  Google Scholar 

  • Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68:85–89

    CAS  PubMed  Google Scholar 

  • Gerstein HC, Miller ME, Byington RP et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    CAS  PubMed  Google Scholar 

  • Ghosh S, Patel N, Rahn D et al (2007) The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol Pharmacol 71:1695–1702

    CAS  PubMed  Google Scholar 

  • Gnoni GV, Giudetti AM, Mercuri E et al (2010) Reduced activity and expression of mitochondrial citrate carrier in streptozotocin-induced diabetic rats. Endocrinology 151:1551–1559

    CAS  PubMed  Google Scholar 

  • Greenfield V, Cheung O, Sanyal AJ (2008) Recent advances in nonalcholic fatty liver disease. Curr Opin Gastroenterol 24:320–327

    PubMed  Google Scholar 

  • Gurlo T, Ryazantsev S, Huang CJ et al (2010) Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol 176:861–869

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gustafsson H, Söderdahl T, Jönsson G et al (2004) Insulin-like growth factor type 1 prevents hyperglycemia-induced uncoupling protein 3 down-regulation and oxidative stress. J Neurosci Res 77:285–291

    CAS  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735

    CAS  PubMed  Google Scholar 

  • Hasan NM, Longacre MJ, Stoker SW et al (2008) Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase. J Biol Chem 283:28048–28059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Højlund K, Wrzesinski K, Larsen PM et al (2003) Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278:10436–10442

    PubMed  Google Scholar 

  • Holloszy JO (2009) Skeletal muscle “mitochondrial deficiency” does not mediate insulin resistance. Am J Clin Nutr 89:463S–466S

    CAS  PubMed  Google Scholar 

  • Hudson BI, Wendt T, Bucciarelli LG et al (2005) Diabetic vascular disease: it’s all the RAGE. Antioxid Redox Signal 7:1588–1600

    CAS  PubMed  Google Scholar 

  • Hunter RL, Choi DY, Ross SA, Bing G (2008) Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague-Dawley rats. Neurosci Lett 432:198–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hwang PM, Bunz F, Yu J et al (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Godoy JA, Quintanilla RA et al (2005) Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104

    CAS  PubMed  Google Scholar 

  • Ishihara M, Inoue I, Kawagoe T et al (2001) Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol 38:1007–1011

    CAS  PubMed  Google Scholar 

  • Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17:1972–1974

    CAS  PubMed  Google Scholar 

  • Jung TW, Lee JY, Shim WS et al (2006) Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity. Biochem Biophys Res Commun 340:221–227

    CAS  PubMed  Google Scholar 

  • Jung TW, Lee JY, Shim WS et al (2007) Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production. J Neurol Sci 253:53–60

    CAS  PubMed  Google Scholar 

  • Kalichman MW, Powell HC, Mizisin AP (1998) Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol 95:47–56

    CAS  PubMed  Google Scholar 

  • Kalofoutis C, Piperi C, Kalofoutis A et al (2007) Type II diabetes mellitus and cardiovascular risk factors: current therapeutic approaches. Exp Clin Cardiol 12:17–28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kemp GJ (2008) The interpretation of abnormal 31P magnetic resonance saturation transfer measurements of Pi/ATP exchange in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab 294:E640–622

    CAS  PubMed  Google Scholar 

  • Kim JY, Hickner RC, Cortright RL et al (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279:E1039–E1044

    CAS  PubMed  Google Scholar 

  • Kohjima M, Enjoji M, Higuchi N et al (2007) Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int J Mol Med 20:351–358

    CAS  PubMed  Google Scholar 

  • Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci USA 105:7627–7628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kummer MP, Heneka MT (2008) PPARs in Alzheimer’s disease. PPAR Res 2008:403896

    PubMed Central  PubMed  Google Scholar 

  • Kuo WW, Chung LC, Liu CT et al (2009) Effects of insulin replacement on cardiac apoptotic and survival pathways in streptozotocin-induced diabetic rats. Cell Biochem Funct 27:479–487

    CAS  PubMed  Google Scholar 

  • Lee S, Jeong SY, Lim WC et al (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983

    CAS  PubMed  Google Scholar 

  • Leinninger GM, Backus C, Sastry AM et al (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23:11–22

    CAS  PubMed  Google Scholar 

  • Leloup C, Tourrel-Cuzin C, Magnan C et al (2009) Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes 58:673–681

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li CJ, Zhang QM, Li MZ et al (2009a) Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy. Chin Med J 122:2580–2586

    CAS  PubMed  Google Scholar 

  • Li Y, Wu H, Khardori R et al (2009b) Insulin-like growth factor-1 receptor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem Biophys Res Commun 384:259–264

    CAS  PubMed  Google Scholar 

  • Lillioja S, Young AA, Culter CL et al (1987) Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest 80:415–424

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    CAS  PubMed  Google Scholar 

  • Lu C, Zhang D, Whiteman M, Armstrong JS (2008) Is antioxidant potential of the mitochondrial targeted ubiquinone derivative MitoQ conserved in cells lacking mtDNA? Antioxid Redox Signal 10:651–660

    CAS  PubMed  Google Scholar 

  • Lu H, Koshkin V, Allister EM et al (2010) Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59:448–459

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mariappan N, Elks CM, Sriramula S et al (2010) NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 85:473–483

    PubMed Central  CAS  PubMed  Google Scholar 

  • McGavock JM, Lingvay I, Zib I et al (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175

    PubMed  Google Scholar 

  • Misu H, Takamura T, Matsuzawa N et al (2007) Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. Diabetologia 50:268–277

    CAS  PubMed  Google Scholar 

  • Modi K, Santani DD, Goyal RK, Bhatt PA (2006) Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biol Trace Elem Res 109:25–34

    CAS  PubMed  Google Scholar 

  • Mogensen M, Sahlin K, Fernström M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599

    CAS  PubMed  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    CAS  PubMed  Google Scholar 

  • Moreira PI, Santos MS, Moreno AM (2003) Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52:1449–1456

    CAS  PubMed  Google Scholar 

  • Moreira PI, Santos MS, Sena C et al (2005a) Insulin protects against amyloid beta-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol Dis 18:628–637

    CAS  PubMed  Google Scholar 

  • Moreira PI, Santos MS, Sena C et al (2005b) CoQ10 therapy attenuates amyloid beta-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Exp Neurol 196:112–119

    CAS  PubMed  Google Scholar 

  • Moreira PI, Rolo AP, Sena C et al (2006) Insulin attenuates diabetes-related mitochondrial alterations: a comparative study. Med Chem 2:299–308

    CAS  PubMed  Google Scholar 

  • Moreira PI, Santos MS, Seiça R, Oliveira CR (2007a) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. J Neurol Sci 257:206–214

    CAS  PubMed  Google Scholar 

  • Moreira PI, Harris PLR, Zhu X et al (2007b) Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimer Dis 12:195–206

    CAS  Google Scholar 

  • Moreira PI, Cardoso SM, Pereira CM et al (2009) Mitochondria as a therapeutic target in Alzheimer's disease and diabetes. CNS Neurol Disord Drug Targets 8:492–511

    CAS  PubMed  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X et al (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802:2–10

    CAS  PubMed  Google Scholar 

  • Morino K, Petersen KF, Dufour S et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115:3587–3593

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205

    CAS  PubMed  Google Scholar 

  • Murphy MP, Smith RA (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 41:235–250

    CAS  PubMed  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  • O'Connor MD, Landahl H, Grodsky GM (1980) Comparison of storage- and signal-limited models of pancreatic insulin secretion. Am J Physiol 238:R378–R389

    PubMed  Google Scholar 

  • Oliveira PJ, Seiça R, Coxito PM et al (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett 554:511–514

    CAS  PubMed  Google Scholar 

  • Opie LH (2004) Fuels: aerobic and anaerobic metabolism. In: Opie LH (ed) The heart, physiology, from cell to circulation, 4th edn. Lippincott–Raven, Philadelphia

    Google Scholar 

  • Patel A, MacMahon S, Chalmers J et al (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    CAS  PubMed  Google Scholar 

  • Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrinol Rev 31(3):364–395

    CAS  Google Scholar 

  • Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pérez-Carreras M, Del Hoyo P, Martín MA et al (2003) Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38:999–1007

    PubMed  Google Scholar 

  • Perseghin G, Scifo P, Danna M et al (2002) Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation. Am J Physiol Endocrinol Metab 283:E556–E564

    CAS  PubMed  Google Scholar 

  • Petersen KF, Dufour S, Befroy D et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2:e233

    PubMed Central  PubMed  Google Scholar 

  • Petri S, Kiaei M, Damiano M et al (2006) Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem 98:1141–1148

    CAS  PubMed  Google Scholar 

  • Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57:2943–2949

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pihlajamäki J, Boes T, Kim EY et al (2009) Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab 94:3521–3529

    PubMed Central  PubMed  Google Scholar 

  • Puche JE, García-Fernández M, Muntané J et al (2008) Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 149:2620–2627

    CAS  PubMed  Google Scholar 

  • Quintanilla RA, Jin YN, Fuenzalida K et al (2008) Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J Biol Chem 283:25628–25637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rabøl R, Larsen S, Højberg PM et al (2010) Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity. J Clin Endocrinol Metab 95:857–863

    PubMed  Google Scholar 

  • Reddy PH (2006) Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 3:31372

    Google Scholar 

  • Ritov VB, Menshikova EV, Azuma K et al (2009) Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 298:E49–E58

    PubMed Central  PubMed  Google Scholar 

  • Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104:1255–1282

    CAS  PubMed  Google Scholar 

  • Roy Chowdhury SK, Zherebitskaya E, Smith DR et al (2010) Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes 59(4):1082–1091

    Google Scholar 

  • Sack MN (2009) Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 46:842–849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanderson TH, Kumar R, Sullivan JM, Krause GS (2008) Insulin blocks cytochrome c release in the reperfused brain through PI3-K signaling and by promoting Bax/Bcl-XL binding. J Neurochem 106:1248–1258

    CAS  PubMed  Google Scholar 

  • Sanyal AJ, Campbell-Sargent C, Mirshahi F et al (2001) Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192

    CAS  PubMed  Google Scholar 

  • Sasaki H, Schmelzer JD, Zollman PJ, Low PA (1997) Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in longstanding diabetic rats. Acta Neuropathol 93:118–128

    CAS  PubMed  Google Scholar 

  • Satapati S, He T, Inagaki T et al (2008) Partial resistance to peroxisome proliferator-activated receptor-alpha agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism. Diabetes 57:2012–2021

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scheuermann-Freestone M, Clarke K (2003) Abnormal cardiac high-energy phosphate metabolism in a patient with type 2 diabetes mellitus. J Cardiometab Syndr 1:366–368

    Google Scholar 

  • Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52:165–171

    CAS  PubMed  Google Scholar 

  • Schrauwen-Hinderling VB, Kooi ME, Hesselink MK et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50:113–120

    CAS  PubMed  Google Scholar 

  • Sena CM, Nunes E, Gomes A et al (2008) Supplementation of coenzyme Q10 and alpha-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutr Res 28:113–121

    CAS  PubMed  Google Scholar 

  • Shen W, Hao J, Tian C et al (2008a) A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. PLoS One 3:e2328

    PubMed Central  PubMed  Google Scholar 

  • Shen W, Liu K, Tian C et al (2008b) R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 51:165–174

    CAS  PubMed  Google Scholar 

  • Siler-Marsiglio KI, Pan Q, Paiva M et al (2005) Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Res 1052:202–211

    CAS  PubMed  Google Scholar 

  • Simoneau JA, Kelley DE (1997) Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol 83:166–171

    CAS  PubMed  Google Scholar 

  • Smith RA, Porteous CM, Gane AM, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716

    CAS  PubMed  Google Scholar 

  • Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 100:5407–5412

    PubMed Central  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    CAS  PubMed  Google Scholar 

  • Strum JC, Shehee R, Virley D, Richardson J et al (2007) Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 11:45–51

    Google Scholar 

  • Suh JH, Wang H, Liu RM, Liu J, Hagen TM (2004) (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesis. Arch Biochem Biophys 423:126–135

    Google Scholar 

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10:601–619

    CAS  PubMed  Google Scholar 

  • Tabbi-Anneni I, Buchanan J, Cooksey RC, Abel ED (2008) Captopril normalizes insulin signaling and insulin-regulated substrate metabolism in obese (ob/ob) mouse hearts. Endocrinology 149:4043–4050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takamura T, Misu H, Matsuzawa-Nagata N et al (2008) Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity (Silver Spring) 16:2601–2609

    CAS  Google Scholar 

  • The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Google Scholar 

  • Thomas DA, Stauffer C, Zhao K et al (2007) Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves post-transplantation function. J Am Soc Nephrol 18:213–222

    CAS  PubMed  Google Scholar 

  • Thyfault JP, Kraus RM, Hickner RC et al (2004) Impaired plasma fatty acid oxidation in extremely obese women. Am J Physiol Endocrinol Metab 287:E1076–E1081

    CAS  PubMed  Google Scholar 

  • Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. J Intern Med 263:167–178

    CAS  PubMed  Google Scholar 

  • Tsuneki H, Sekizaki N, Suzuki T et al (2007) Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. Eur J Pharmacol 566:1–10

    CAS  PubMed  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Google Scholar 

  • Weydt P, Pineda VV, Torrence AE et al (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab 4:349–362

    CAS  PubMed  Google Scholar 

  • Wu JS, Lin TN, Wu KK (2009) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220:58–71

    CAS  PubMed  Google Scholar 

  • Yang L, Zhao K, Calingasan NY et al (2009) Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal 11:2095–2104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao K, Luo G, Zhao GM et al (2003) Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther 304:425–432

    CAS  PubMed  Google Scholar 

  • Zhao K, Zhao GM, Wu D et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    CAS  PubMed  Google Scholar 

  • Zhao K, Luo G, Giannelli S, Szeto HH (2005) Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol 70:1796–1806

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula I. Moreira or Catarina R. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreira, P.I., Oliveira, C.R. (2011). Mitochondria as Potential Targets in Antidiabetic Therapy. In: Schwanstecher, M. (eds) Diabetes - Perspectives in Drug Therapy. Handbook of Experimental Pharmacology, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17214-4_14

Download citation

Publish with us

Policies and ethics