Advertisement

Psychoendokrinologische und -immunologische Veränderungen während der Lebensspanne

  • Brigitte M. Kudielka
  • Nicolas Rohleder

Zusammenfassung

Das endokrine System und das Immunsystem stellen zusammen mit dem Zentralnervensystem (ZNS) drei weitverzweigte Kommunikationsnetze unseres Organismus dar, über die zahlreiche Körperfunktionen gesteuert und überwacht werden. Während das ZNS elektrische Impulse generiert um Informationen innerhalb des ZNS zu verarbeiten und von Neuronen an nachgeordnete Körperzellen weiterzuleiten, produziert das endokrine System Hormone, welche als Botenstoff e des Körpers agieren. In enger Zusammenarbeit mit dem ZNS steuert das endokrine System nicht nur die offensichtlichen phänotypischen Entwicklungen des Menschen über die Lebensspanne, sondern es ist auch maßgeblich an der Veränderung funktioneller Eigenschaft en beteiligt. Das Immunsystem muss parallel mit sowohl zellulären und humoralen Abwehrprozessen dafür sorgen, dass die Integrität des Organismus in der Auseinandersetzung mit potenziell schädigenden Fremdkörpern (Antigenen) im sich entwickelnden bzw. alternden Menschen aufrechterhalten wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adkins B, Leclerc C, Marshall-Clarke S (2004) Neonatal adaptive immunity comes of age. Nat Rev Immunol 4(7): 553– 564CrossRefPubMedGoogle Scholar
  2. Bauer ME, Jeckel CM, Luz C (2009) The role of stress factors during aging of the immune system. Ann NY Acad Sci 1153: 139–152CrossRefPubMedGoogle Scholar
  3. Blackburn EH (1990) Telomeres and Their Synthesis. Science 249(4968): 489–490CrossRefPubMedGoogle Scholar
  4. Dantzer R, O'Connor JC, Freund GG, Johnson, RW Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1): 46–56CrossRefPubMedGoogle Scholar
  5. de Kloet ER, Vreugdenhil E, Oitzl MS Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19(3): 269–301CrossRefPubMedGoogle Scholar
  6. Dorshkind K, Montecino-Rodriguez E, Signer RA (2009) The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 9(1): 57–62CrossRefPubMedGoogle Scholar
  7. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD et al. (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101(49): 17312– 17315CrossRefPubMedGoogle Scholar
  8. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F et al. (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1): 92–105CrossRefPubMedGoogle Scholar
  9. Fries E, Dettenborn L, Kirschbaum C (2009) The cortisol awakening response (CAR): facts and future directions. Int J Psychophysiol 72(1): 67–73CrossRefPubMedGoogle Scholar
  10. Gerlo EA, Schoors DF, Dupont AG (1991) Age- and sex-related differences for the urinary excretion of norepinephrine, epinephrine, and dopamine in adults. Clin Chem 37(6): 875–878PubMedGoogle Scholar
  11. Gouin JP, Hantsoo L, Kiecolt-Glaser JK (2008) Immune dysregulation and chronic stress among older adults: a review. Neuroimmunomodulation 15(4-6): 251–259CrossRefPubMedGoogle Scholar
  12. Gunnar MR (1992) Reactivity of the hypothalamic-pituitaryadrenocortical system to stressors in normal infants and children. Pediatrics 90(3 Pt 2): 491–497PubMedGoogle Scholar
  13. Gunnar MR, Talge NM, Herrera A (2009) Stressor paradigms in developmental studies: what does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology 34(7): 953–967CrossRefPubMedGoogle Scholar
  14. Harris TB, Ferrucci L, Tracy RP et al. (1999) Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 106(5): 506–512CrossRefPubMedGoogle Scholar
  15. Holladay SD, Smialowicz RJ (2000) Development of the murine and human immune system: differential effects of immunotoxicants depend on time of exposure. Environ Health Perspect 108, Suppl 3: 463–473CrossRefPubMedGoogle Scholar
  16. Huizink AC, Mulder EJ, Buitelaar JK (2004) Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol Bull 130(1): 115–142CrossRefPubMedGoogle Scholar
  17. Kirschbaum C, Kudielka BM, Gaab J, Schommer NC, Hellhammer DH (1999) Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus- pituitary-adrenal axis. Psychosom Med 61(2): 154– 162PubMedGoogle Scholar
  18. Kirschbaum C, Kudielka BM, Wolf TO, Rohleder N (2005) Endokrinologie und Immunologie des höheren Lebensalters. In Filipp S-H, Staudinger UM (Hrsg) Enzyklopädie der Psychologie, Themenbereich C Theorie und Forschung, Serie V Entwicklungspsychologie, Band 6 Entwicklungspsychologie des mittleren und höheren Erwachsenenalters, Hogrefe, Göttingen, pp, chapter 5, 173–208Google Scholar
  19. Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39(5): 687–699CrossRefPubMedGoogle Scholar
  20. Kudielka BM, Kirschbaum C (2005) Sex differences in HPA axis responses to stress: a review. Biol Psychol 69(1): 113– 132CrossRefPubMedGoogle Scholar
  21. Kudielka BM, Wüst S (2010) Human models in acute and chronic stress – assessing determinants of the individual stress response. Stress 13(1): 1–14CrossRefPubMedGoogle Scholar
  22. Kudielka BM, Schmidt-Reinwald AK, Hellhammer DH, Kirschbaum C (1999) Psychological and endocrine responses to psychosocial stress and dexamethasone/corticotropin- releasing hormone in healthy postmenopausal women and young controls: the impact of age and a two-week estradiol treatment. Neuroendocrinology 70(6): 422–430CrossRefPubMedGoogle Scholar
  23. Kudielka BM, Buske-Kirschbaum A, Hellhammer DH, Kirschbaum C (2004) HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology 29(1): 83–98CrossRefPubMedGoogle Scholar
  24. Kudielka BM, Schmidt-Reinwald AK, Hellhammer DH, Schürmeyer T, Kirschbaum C (2000) Psychosocial stress and HPA functioning: no evidence for a reduced resilience in healthy elderly men. Stress 3(3): 229–240CrossRefPubMedGoogle Scholar
  25. Kudielka BM, Hellhammer DH, Wüst S (2009) Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology 34(1): 2–18CrossRefPubMedGoogle Scholar
  26. Lupien S, Lecours AR, Schwartz G et al. (1996) Longitudinal study of basal cortisol levels in healthy elderly subjects: evidence for subgroups. Neurobiol Aging, 17(1), 95–105CrossRefPubMedGoogle Scholar
  27. M'Rabet L, Vos AP, Boehm G, Garssen J (2008) Breast-feeding and its role in early development of the immune system in infants: consequences for health later in life. J Nutr 138(9): 1782S–1790SPubMedGoogle Scholar
  28. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3): 171–179CrossRefPubMedGoogle Scholar
  29. Ng PC (2000) The fetal and neonatal hypothalamic-pituitaryadrenal axis. Arch Dis Child Fetal Neonatal Ed 82(3): F250–254CrossRefPubMedGoogle Scholar
  30. Nierop A, Bratsikas A, Klinkenberg A, Nater U, Zimmermann R, Ehlert U (2006) Prolonged salivary cortisol recovery in second trimester pregnant women and attenuated salivary alpha-amylase responses to psychosocial stress in human pregnancy. J Clin Endocrinol Metab 91: 1329– 1335CrossRefPubMedGoogle Scholar
  31. Ramos-Casals M, Garcia-Carrasco M, Brito MP, Lopez-Soto A, Font J (2003) Autoimmunity and geriatrics: clinical significance of autoimmune manifestations in the elderly. Lupus 12(5): 341–355CrossRefPubMedGoogle Scholar
  32. Rohleder N, Nater UM (2009) Determinants of salivary alphaamylase in humans and methodological considerations. Psychoneuroendocrinology 34(4): 469–485CrossRefPubMedGoogle Scholar
  33. Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7(3): 284–301CrossRefPubMedGoogle Scholar
  34. Seeman TE, Robbins RJ (1994) Aging and hypothalamic-pituitary- adrenal response to challenge in humans. Endocr Rev 15(2): 233–260PubMedGoogle Scholar
  35. Shaw EA, Stevens AM (2008) Are pediatric autoimmune diseases primarily genetic diseases? Curr Opin Rheumatol, 20(5): 589–594CrossRefPubMedGoogle Scholar
  36. Strahler J, Mueller A, Rosenloecher F, Kirschbaum C, Rohleder N (2010) Salivary alpha-amylase stress reactivity across different age groups. Psychophysiology 47(3): 587–595CrossRefPubMedGoogle Scholar
  37. Van Cauter E, Leproult R, Kupfer DJ (1996) Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 81(7): 2468–2473CrossRefPubMedGoogle Scholar
  38. West LJ (2002) Defining critical windows in the development of the human immune system. Hum Exp Toxicol 21(9– 10): 499–505CrossRefPubMedGoogle Scholar
  39. Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2(9): 777–780CrossRefPubMedGoogle Scholar
  40. Wilhelm I, Born J, Kudielka BM, Schlotz W, Wüst S (2007) Is the cortisol awakening rise a response to awakening? Psychoneuroendocrinology 32(4): 358–366CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Brigitte M. Kudielka
    • 1
  • Nicolas Rohleder
    • 2
  1. 1.Jacobs Center on Lifelong Learning and Institutional DevelopmentJacobs University Bremen gGmbHBremen
  2. 2.Department of PsychologyBrandeis UniversityWalthamUSA

Personalised recommendations