Robotic Orientation towards Speaker for Human-Robot Interaction

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6433)


The orientation of conversational robots to face their interlocutors is essential for natural and efficient Human-Robot Interaction (HRI). In this paper, progress towards this objective is presented: a service robot able to detect the direction of a user, and orient itself towards him/her, in a complex auditive environment, using only voice and a 3-microphone system. This functionality is integrated within Spoken HRI using dialogue models and a cognitive architecture. The paper further discusses applications where robotic orientation benefits HRI, such as a tour-guide robot capable to guide a poster session and a “Marco Polo” game where a robot aims to follow a user purely by sound.


Cognitive architecture Human-robot interaction Direction-of-arrival estimation Robotic orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avilés, H., Alvarado-González, A.M., Venegas, E., Rascón, C., Meza, I., Pineda, L.A.: Development of a tour–guide robot using dialog models and a cognitive architecture. In: Kuri-Morales, A., Simari, G. (eds.) IBERAMIA 2010. LNCS (LNAI), vol. 6433, pp. 512–521. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Faller, C., Merimaa, J.: Source localization in complex listening situations: Selection of binaural cues based on interaural coherence. The Journal of the Acoustical Society of America 116(5), 3075–3089 (2004)CrossRefGoogle Scholar
  3. 3.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3-4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hjelmås, E., Low, B.K.: Face detection: A survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Horchler, A.D., Reeve, R.E., Webb, B., Quinn, R.D.: Robot phonotaxis in the wild: a biologically inspired approach to outdoor sound localization. In: Sound Localization, 11th International Conference on Advanced Robotics (ICAR 2003), pp. 1749–1756 (2003)Google Scholar
  6. 6.
    Liu, R., Wang, Y.: Azimuthal source localization using interaural coherence in a robotic dog: modeling and application. Robotica First View, 1–8 (2010)Google Scholar
  7. 7.
    Lockwood, M.E., Jones, D.L., Bilger, R.C., Lansing, C.R., O’Brien Jr., W.D., Wheeler, B.C., Feng, A.S.: Performance of time- and frequency-domain binaural beamformers based on recorded signals from real rooms. Journal of the Acoustical Society of America 115(1), 379–391 (2004)CrossRefGoogle Scholar
  8. 8.
    Meza, I., Salinas, L., Venegas, E., Castellanos, H., Chavarria, A., Pineda, L.A.: Specification and evaluation of a spanish conversational system using dialogue models. In: Kuri-Morales, A., Simari, G. (eds.) IBERAMIA 2010. LNCS (LNAI), vol. 6433, pp. 346–355. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Mohan, S., Lockwood, M.E., Kramer, M.L., Jones, D.L.: Localization of multiple acoustic sources with small arrays using a coherence test. Journal of the Acoustical Society of America 123(4), 2136–2147 (2008)CrossRefGoogle Scholar
  10. 10.
    Murray, J.C., Erwin, H., Wermter, S.: Robotics sound-source localization and tracking using interaural time difference and cross-correlation. In: AI Workshop on NeuroBotics (2004)Google Scholar
  11. 11.
    Murray, J.C., Erwin, H.R., Wermter, S.: Robotic sound-source localisation architecture using cross-correlation and recurrent neural networks. Neural Networks 22(2), 173–189 (2009)CrossRefGoogle Scholar
  12. 12.
    Nakadai, K., Okuno, H.G., Kitano, H.: Real-time sound source localization and separation for robot audition. In: Proceedings IEEE International Conference on Spoken Language Processing, pp. 193–196 (2002)Google Scholar
  13. 13.
    Pineau, J., Montemerlo, M., Pollack, M., Roy, N., Thrun, S.: Towards robotic assistants in nursing homes: Challenges and results. Robotics and Autonomous Systems 42(3-4), 271–281 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Pineda, L.A., Meza, I., Salinas, L.: Dialogue model specification and interpretation for intelligent multimodal HCI. In: Kuri-Morales, A., Simari, G. (eds.) IBERAMIA 2010. LNCS (LNAI), vol. 6433, pp. 20–29. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Saxena, A., Ng, A.Y.: Learning sound location from a single microphone. In: ICRA 2009: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 4310–4315. IEEE Press, Piscataway (2009)Google Scholar
  16. 16.
    Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation 34(3), 276–280 (1986)CrossRefGoogle Scholar
  17. 17.
    Smith, M., Kim, K., Thompson, D.: Noise source identification using microphone arrays. Proceedings of the Institute of Acoustics 29(5) (January 2007)Google Scholar
  18. 18.
    Stiefelhagen, R., Ekenel, H.K., Fugen, C., Gieselmann, P., Holzapfel, H., Kraft, F., Nickel, K., Voit, M., Waibel, A.: Enabling multimodal human-robot interaction for the karlsruhe humanoid robot. IEEE Transactions on Robotics 23(5), 840–851 (2007)CrossRefGoogle Scholar
  19. 19.
    Tanawongsuwan, R., Stoytchev, A., Stoytchev, E., Essa, I.: Robust tracking of people by a mobile robotic agent. Tech. rep. (1999)Google Scholar
  20. 20.
    Valin, J., Rouat, J., Michaud, F.: Enhanced robot audition based on microphone array source separation with post-filter. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2123–2128 (2004)Google Scholar
  21. 21.
    Wang, D., Brown, G.J.(eds.): Computational auditory scene analysis: Principles, Algorithms, and Applications. IEEE Press/Wiley-Interscience (2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Matemáticas Aplicacas y en Sistemas (IIMAS)Universidad Nacional Autónoma de México (UNAM)Mexico

Personalised recommendations