Skip to main content

Leakage Quantification of Cryptographic Operations

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2010 (OTM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6426))

Abstract

Perfectly secure protocols are often too inefficient performance wise to be used in a practical setting. On the other hand, an insecure (but faster) protocol might be deemed secure for a particular setting. Recent research has thus focused on precise leakage quantification of a security protocol. In this context, we first give precise leakage quantification of a basic cryptographic primitive, that of multiplicative hiding. We then show how the approach can be extended to compute worst case leakage bounds of arbitrary compositions of cryptographic operations. The composition results make our bounds applicable to a wide range of general security protocols.

This work is partly funded by the European Commission through the ICT program under Framework 7 grant 213531 to the SecureSCM project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ryan, P.Y.A., McLean, J., Millen, J., Gilgor, V.: Noninterference, who needs it? In: Proceedings of the IEEE Computer Security Foundations Workshop, pp. 237–238 (2001)

    Google Scholar 

  2. SecureSCM project, http://www.securescm.org/

  3. Shamir, A.: How to share a Secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computations. In: Proceedings of the Annual Symposium on Theory of Computing (STOC), pp. 1–10 (1988)

    Google Scholar 

  5. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try attacks. In: Proceedings of the Conference on Mathematical Foundations of Programming Semantics (MFPS), pp. 75–91 (2009)

    Google Scholar 

  6. Kerschbaum, F., Biswas, D., de Hoogh, S.: Performance comparison of secure comparison protocols. In: Proceedings of the International Workshop on Business Processes Security (BPS), pp. 133–136 (2009)

    Google Scholar 

  7. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Smith, G.: Adversaries and information leaks (Tutorial). In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 383–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Kiltz, E., Leander, G., Malone-Lee, J.: Secure Computation of the Mean and Related Statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Toft, T.: Solving Linear Programs Using Multiparty Computation. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Malacaria, P.: Assessing security threats of looping constructs. In: Proceedings of the Annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages (POPL), pp. 225–235 (2007)

    Google Scholar 

  12. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boreale, M.: Quantifying information leakage in process calculi. Information and Computation 207(6), 699–725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pliam, J.O.: On the incomparability of entropy and marginal guesswork in Brute-force attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 67–79. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy channels. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 281–300. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-hiding protocols. In: Proceedings of the IEEE Computer Security Foundations Symposium (CSF), pp. 341–354 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wibmer, M., Biswas, D., Kerschbaum, F. (2010). Leakage Quantification of Cryptographic Operations. In: Meersman, R., Dillon, T., Herrero, P. (eds) On the Move to Meaningful Internet Systems: OTM 2010. OTM 2010. Lecture Notes in Computer Science, vol 6426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16934-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16934-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16933-5

  • Online ISBN: 978-3-642-16934-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics