Skip to main content

Composing Near-Optimal Expert Teams: A Trade-Off between Skills and Connectivity

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 6426)

Abstract

Rapidly changing business requirements necessitate the ad-hoc composition of expert teams to handle complex business cases. Expert-centric properties such as skills, however, are insufficient to assemble an effective team. The given interaction structure determines to a large degree how well the experts can be expected to collaborate. This paper addresses the team composition problem which consists of expert interaction network extraction, skill profile creation, and ultimately team formation. We provide a heuristic for finding near-optimal teams that yield the best trade-off between skill coverage and team connectivity. Finally, we apply a real-world data set to demonstrate the applicability and benefits of our approach.

Keywords

  • social network
  • team formation
  • simulated annealing
  • skill connectivity tradeoff

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-16934-2_35
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-16934-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing and yahoo answers: everyone knows something. In: WWW 2008: Proceeding of the 17th Int. Conference on World Wide Web, pp. 665–674. ACM, New York (2008)

    Google Scholar 

  2. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54. ACM, New York (2006)

    Google Scholar 

  3. Baresi, L., Bianchini, D., Antonellis, V.D., Fugini, M.G., Pernici, B., Plebani, P.: Context-aware composition of e-services. In: Benatallah, B., Shan, M.-C. (eds.) TES 2003. LNCS, vol. 2819, pp. 28–41. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  4. Baykasoglu, A., Dereli, T., Das, S.: Project team selection using fuzzy optimization approach. Cybern. Syst. 38(2), 155–185 (2007)

    CrossRef  MATH  Google Scholar 

  5. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks. In: MSR 2006: Proceedings of the 2006 Int. Workshop on Mining Software Repositories, pp. 137–143. ACM Press, New York (2006)

    CrossRef  Google Scholar 

  6. Bird, C., Pattison, D., D’Souza, R., Filkov, V., Devanbu, P.: Latent social structure in open source projects. In: SIGSOFT 2008/FSE-16: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, pp. 24–35. ACM, New York (2008)

    CrossRef  Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998); Proceedings of the Seventh International World Wide Web Conference

    CrossRef  Google Scholar 

  8. Cheatham, M., Cleereman, K.: Application of social network analysis to collaborative team formation. In: CTS 2006: Proceedings of the International Symposium on Collaborative Technologies and Systems, pp. 306–311. IEEE Computer Society, Washington (2006)

    Google Scholar 

  9. Colizza, V., Flammini, A., Serrano, M.A., Vespignani, A.: Detecting rich-club ordering in complex networks. Nature Physics 2, 110–115 (2006)

    CrossRef  Google Scholar 

  10. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1), 1–30 (2005)

    CrossRef  Google Scholar 

  11. Fitzpatrick, E.L., Askin, R.G.: Forming effective worker teams with multi-functional skill requirements. Comput. Ind. Eng. 48(3), 593–608 (2005)

    CrossRef  Google Scholar 

  12. Gaston, M.E., Simmons, J.: desJardins, M.: Adapting network structure for efficient team formation. In: AAMAS 2004 Workshop on Learning and Evolution in Agent Based Systems (July 2004)

    Google Scholar 

  13. Gómez, V., Kaltenbrunner, A., López, V.: Statistical analysis of the social network and discussion threads in slashdot. In: WWW 2008: Proceedings of the 17th Int. Conference on World Wide Web, pp. 645–654. ACM, New York (2008)

    Google Scholar 

  14. Haveliwala, T.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering 15(4), 784–796 (2003)

    CrossRef  Google Scholar 

  15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: KDD 2009: Proceedings of the 15th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining, pp. 467–476. ACM, New York (2009)

    Google Scholar 

  17. Maamar, Z., Benslimane, D., Thiran, P., Ghedira, C., Dustdar, S., Sattanathan, S.: Towards a context-based multi-type policy approach for web services composition. Data Knowl. Eng. 62(2), 327–351 (2007)

    CrossRef  Google Scholar 

  18. McAuley, J.J., da Fontoura Costa, L., Caetano, T.S.: Rich-club phenomenon across complex network hierarchies. Applied Physics Letters 91(8), 084103 (2007)

    CrossRef  Google Scholar 

  19. Quitadamo, R., Zambonelli, F., Cabri, G.: The service ecosystem: Dynamic self-aggregation of pervasive communication services. In: First International Workshop on Software Engineering for Pervasive Computing Applications, Systems, and Environments, SEPCASE 2007, pp. 1–10 (May 2007)

    Google Scholar 

  20. Schall, D.: Human Interactions in Mixed Systems - Architecture, Protocols, and Algorithms. PhD Thesis, Vienna University of Technology, Karlsplatz 13, 1040 Vienna, Austria (2009)

    Google Scholar 

  21. Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex service-oriented systems. Information Systems Journal 35(7), 735–757 (2010)

    CrossRef  Google Scholar 

  22. Skopik, F., Truong, H.L., Dustdar, S.: Trust and reputation mining in professional virtual communities. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, pp. 76–90. Springer, Heidelberg (2009)

    Google Scholar 

  23. Wi, H., Oh, S., Mun, J., Jung, M.: A team formation model based on knowledge and collaboration. Expert Syst. Appl. 36(5), 9121–9134 (2009)

    CrossRef  Google Scholar 

  24. Yang, Y., Mahon, F., Williams, M.H., Pfeifer, T.: Context-aware dynamic personalised service re-composition in a pervasive service environment. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159, pp. 724–735. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorn, C., Dustdar, S. (2010). Composing Near-Optimal Expert Teams: A Trade-Off between Skills and Connectivity. In: Meersman, R., Dillon, T., Herrero, P. (eds) On the Move to Meaningful Internet Systems: OTM 2010. OTM 2010. Lecture Notes in Computer Science, vol 6426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16934-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16934-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16933-5

  • Online ISBN: 978-3-642-16934-2

  • eBook Packages: Computer ScienceComputer Science (R0)