Computing the Cutwidth of Bipartite Permutation Graphs in Linear Time

  • Pinar Heggernes
  • Pim van ’t Hof
  • Daniel Lokshtanov
  • Jesper Nederlof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6410)


The problem of determining the cutwidth of a graph is a notoriously hard problem which remains NP-complete under severe restrictions on input graphs. Until recently, non-trivial polynomial-time cutwidth algorithms were known only for subclasses of graphs of bounded treewidth. In WG 2008, Heggernes et al. initiated the study of cutwidth on graph classes containing graphs of unbounded treewidth, and showed that a greedy algorithm computes the cutwidth of threshold graphs. We continue this line of research and present the first polynomial-time algorithm for computing the cutwidth of bipartite permutation graphs. Our algorithm runs in linear time. We stress that the cutwidth problem is NP-complete on bipartite graphs and its computational complexity is open even on small subclasses of permutation graphs, such as trivially perfect graphs.


Bipartite Graph Linear Time Input Graph Complete Bipartite Graph Color Classis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25, 403–423 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arora, S., Frieze, A., Kaplan, H.: A new rounding procedure for the assignment problem with applications to dense graphs arrangements. In: Proceedings of FOCS 1996, pp. 21–30. IEEE, Los Alamitos (1996)Google Scholar
  3. 3.
    Blin, G., Fertin, G., Hermelin, D., Vialette, S.: Fixed-parameter algorithms for protein similarity search under RNA structure constraints. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 271–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Combinatorica 67, 273–289 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chung, M.J., Makedon, F., Sudborough, I.H., Turner, J.: Polynomial time algorithms for the min cut problem on degree restricted d trees. In: Proceedings of FOCS 1982, pp. 262–271. IEEE, Los Alamitos (1982)Google Scholar
  7. 7.
    Díaz, J., Penrose, M., Petit, J., Serna, M.J.: Approximating layout problems on random geometric graphs. Journal of Algorithms 39, 78–117 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Díaz, J., Petit, J., Serna, M.J.: A survey of graph layout problems. ACM Computing Surveys 34, 313–356 (2002)CrossRefGoogle Scholar
  9. 9.
    Gavril, F.: Some NP-complete problems on graphs. In: 11th Conference on Information Sciences and Systems, pp. 91–95. John Hopkins University, Baltimore (1977)Google Scholar
  10. 10.
    Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of split graphs, threshold graphs, and proper interval graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 218–229. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Jünger, M., Reinelt, G., Rinaldi, G.: The traveling salesman problem. In: Handbook on Operations Research and Management Sciences, vol. 7, pp. 225–330. North-Holland, Amsterdam (1995)Google Scholar
  12. 12.
    Karger, D.R.: A randomized fully polynomial approximation scheme for the all terminal network reliability problem. In: Proceedings of STOC 1996, pp. 11–17. ACM, New York (1996)Google Scholar
  13. 13.
    Leighton, F.T., Rao, S.: An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Proceedings of FOCS 1988, pp. 422–431. IEEE, Los Alamitos (1988)Google Scholar
  14. 14.
    Makedon, F., Sudborough, I.H.: Minimizing width in linear layouts. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 478–490. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  15. 15.
    Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 265–274. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  16. 16.
    Mutzel, P.: A polyhedral approach to planar augmentation and related problems. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 497–507. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete Applied Mathematics 18, 279–292 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: A linear time fixed parameter algorithm. Journal of Algorithms 56, 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth II: Algorithms for partial w-trees of bounded degree. Journal of Algorithms 56, 24–49 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Yannakakis, M.: A polynomial algorithm for the min cut linear arrangement of trees. Journal of ACM 32, 950–988 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yuan, J., Zhou, S.: Optimal labelling of unit interval graphs. Appl. Math. J. Chinese Univ. Ser. B (English edition) 10, 337–344 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pinar Heggernes
    • 1
  • Pim van ’t Hof
    • 2
  • Daniel Lokshtanov
    • 1
  • Jesper Nederlof
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamUnited Kingdom

Personalised recommendations