A Quartic Kernel for Pathwidth-One Vertex Deletion

  • Geevarghese Philip
  • Venkatesh Raman
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6410)


The pathwidth of a graph is a measure of how path-like the graph is. Given a graph G and an integer k, the problem of finding whether there exist at most k vertices in G whose deletion results in a graph of pathwidth at most one is NP-Complete. We initiate the study of the parameterized complexity of this problem, parameterized by k. We show that the problem has a quartic vertex-kernel: We show that, given an input instance (G = (V,E),k);|V| = n, we can construct, in polynomial time, an instance (G′,k′) such that (i) (G,k) is a YES instance if and only if (G′,k′) is a YES instance, (ii) G′ has \({\mathcal O}(k^{4})\) vertices, and (iii) k′ ≤ k. We also give a fixed parameter tractable (FPT) algorithm for the problem that runs in \({\mathcal O}(7^{k}k\cdot n^{2})\) time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Álvarez, C., Serna, M.: The Proper Interval Colored Graph problem for caterpillar trees. Electronic Notes in Discrete Mathematics 17, 23–28 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arnborg, S., Proskurowski, A., Seese, D.: Monadic Second Order Logic, Tree Automata and Forbidden Minors. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL 1990. LNCS, vol. 533, pp. 1–16. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Assmann, S.F., Peck, G.W., Sysło, M.M., Zak, J.: The bandwidth of caterpillars with hairs of length 1 and 2. SIAM Journal on Algebraic and Discrete Methods 2(4), 387–393 (1981)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bafna, V., Berman, P., Fujito, T.: A 2-Approximation Algorithm for the Undirected Feedback Vertex Set problem. SIAM Journal of Discrete Mathematics 12(3), 289–297 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bodlaender, H.L.: On disjoint cycles. International Journal of Foundations of Computer Science 5(1), 59–68 (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1–2), 1–45 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bodlaender, H.L.: Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bodlaender, H.L.: A Cubic Kernel for Feedback Vertex Set. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial Optimization on Graphs of Bounded Treewidth. The Computer Journal 51(3), 255–269 (2008)CrossRefGoogle Scholar
  10. 10.
    Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop cutset. Theory of Computing Systems 46(3), 566–597 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bryant, R.L., Kinnersley, N.G., Fellows, M.R., Langston, M.A.: On Finding Obstruction Sets and Polynomial-Time Algorithms for Gate Matrix Layout. In: Proceedings of the 25th Allerton Conference on Communication, Control and Computing, pp. 397–398 (1987)Google Scholar
  12. 12.
    Burrage, K., Estivill Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 192–202. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set: New Measure and New Structures. In: Kaplan, H. (ed.) Algorithm Theory - SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved fpt algorithm and quadratic kernel for pathwidth one vertex deletion. Accepted at IPEC 2010 (2010)Google Scholar
  15. 15.
    Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k) n 3) FPT-Algorithm for the Undirected Feedback Vertex Set problem. Theory of Computing Systems 41(3), 479–492 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  17. 17.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Computer Science Review 2(1), 29–39 (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Downey, R.G., Fellows, M.R.: Fixed Parameter Tractability and Completeness. In: Complexity Theory: Current Research, pp. 191–225. Cambridge University Press, Cambridge (1992)Google Scholar
  19. 19.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Fellows, M.R., Langston, M.A.: On Search, Decision and the Efficiency of Polynomial-time Algorithms. In: Proceedings of STOC 1989, pp. 501–512. ACM Press, New York (1989)Google Scholar
  21. 21.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  22. 22.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer and System Sciences 72(8), 1386–1396 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  24. 24.
    Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized Algorithms for Feedback Vertex Set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Communications, 85–103 (1972)Google Scholar
  26. 26.
    Kinnersley, N.G., Langston, M.A.: Obstruction Set Isolation for the Gate Matrix Layout problem. Discrete Applied Mathematics 54(2-3), 169–213 (1994)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kloks, T.: Treewidth – computations and approximations. LNCS, vol. 842. Springer, Heidelberg (1994)MATHGoogle Scholar
  28. 28.
    Lin, M., Lin, Z., Xu, J.: Graph bandwidth of weighted caterpillars. Theoretical Computer Science 363(3), 266–277 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  31. 31.
    Papadimitriou, C.H.: The NP-Completeness of the bandwidth minimization problem. Computing 16(3), 263–270 (1976)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex deletion. A full version of the current paper, http://www.imsc.res.in/~gphilip/publications/pwone.pdf
  33. 33.
    Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3), 403–415 (2006)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Robertson, N., Seymour, P.D.: Graph Minors. II. Algorithmic Aspects of Tree-Width. Journal of Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of SODA 2009, Society for Industrial and Applied Mathematics, pp. 115–119 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Geevarghese Philip
    • 1
  • Venkatesh Raman
    • 1
  • Yngve Villanger
    • 2
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.University of BergenBergenNorway

Personalised recommendations