On the Boolean-Width of a Graph: Structure and Applications

  • Isolde Adler
  • Binh-Minh Bui-Xuan
  • Yuri Rabinovich
  • Gabriel Renault
  • Jan Arne Telle
  • Martin Vatshelle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6410)


Boolean-width is a recently introduced graph invariant. Similar to tree-width, it measures the structural complexity of graphs. Given any graph G and a decomposition of G of boolean-width k, we give algorithms solving a large class of vertex subset and vertex partitioning problems in time \(O^*(2^{O(k^2)})\). We relate the boolean-width of a graph to its branch-width and to the boolean-width of its incidence graph. For this we use a constructive proof method that also allows much simpler proofs of similar results on rank-width in [S. Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory 57(3):239–244, 2008]. For an n-vertex random graph, with a uniform edge distribution, we show that almost surely its boolean-width is Θ(log2 n) – setting boolean-width apart from other graph invariants – and it is easy to find a decomposition witnessing this. Combining our results gives algorithms that on input a random graph on n vertices will solve a large class of vertex subset and vertex partitioning problems in quasi-polynomial time \(O^*(2^{O(\log ^4 n)})\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodlaender, H., Koster, A.: Treewidth Computations I Upper Bounds. Technical Report UU-CS-2008-032, Department of Information and Computing Sciences, Utrecht University (2008)Google Scholar
  2. 2.
    Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. In: 4th International Workshop on Parameterized and Exact Computation (IWPEC 2009). LNCS, vol. 5917, pp. 61–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms with runtime single exponential in rankwidth. Discrete Applied Mathematics 158(7), 809–819 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Corneil, D., Rotics, U.: On the relationship between clique-width and treewidth. SIAM Journal on Computing 34(4), 825–847 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 193–242 (1990)Google Scholar
  6. 6.
    Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  9. 9.
    Ganian, R., Hliněný, P.: On Parse Trees and Myhill-Nerode-type Tools for handling Graphs of Bounded Rank-width. Discrete Applied Mathematics 158(7), 851–867 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gerber, M., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoretical Computer Science 299(1-3), 719–734 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. The Computer Journal 51(3), 326–362 (2008)CrossRefGoogle Scholar
  12. 12.
    Hvidevold, E.: Implementation of heuristics for computing boolean-width, Master thesis, University of Bergen (September 2010) (to appear)Google Scholar
  13. 13.
    Johansson, Ö.: Clique-decomposition, NLC-decomposition and modular decomposition – Relatiohships and results for random graphs. Congressus Numerantium 132, 39–60 (1998)MathSciNetMATHGoogle Scholar
  14. 14.
    Kanté, M.: Vertex-minor reductions can simulate edge contractions. Discrete Applied Mathematics 155(17), 2328–2340 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kim, K.H.: Boolean matrix theory and applications. Marcel Dekker, New York (1982)MATHGoogle Scholar
  16. 16.
    Kloks, T., Bodlaender, H.: Only few graphs have bounded treewidth. Technical Report UU-CS-92-35, Department of Information and Computing Sciences, Utrecht University (1992)Google Scholar
  17. 17.
    Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics 126(2-3), 197–221 (2003); Abstract at SODA 2001MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lee, C., Lee, J., Oum, S.: Rank-width of Random Graphs, http://arxiv.org/pdf/1001.0461
  19. 19.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  20. 20.
    Oum, S.: Rank-width is less than or equal to branch-width. Journal of Graph Theory 57(3), 239–244 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rabinovich, Y., Telle, J.A.: On the boolean-width of a graph: structure and applications, http://arxiv.org/pdf/0908.2765
  22. 22.
    Rooij, J., Bodlaender, H., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM Journal on Discrete Mathematics 10(4), 529–550 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Isolde Adler
    • 1
  • Binh-Minh Bui-Xuan
    • 1
  • Yuri Rabinovich
    • 2
  • Gabriel Renault
    • 1
  • Jan Arne Telle
    • 1
  • Martin Vatshelle
    • 1
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.Department of Computer ScienceHaifa UniversityIsrael

Personalised recommendations